【图像配准】基于matlab GUI互相关图像配准【含Matlab源码 853期】

举报
海神之光 发表于 2022/05/29 02:55:06 2022/05/29
【摘要】 一、互相关简介 在这里我想探讨一下“互相关”中的一些概念。正如卷积有线性卷积(linear convolution)和循环卷积(circular convolution)之分;互相关也有线性互相关(li...

一、互相关简介

在这里我想探讨一下“互相关”中的一些概念。正如卷积有线性卷积(linear convolution)和循环卷积(circular convolution)之分;互相关也有线性互相关(linear cross-correlation)和循环互相关(circular cross-correlation)。线性互相关和循环互相关的基本公式是一致的,不同之处在于如何处理边界数据。其本质的不同在于它们对原始数据的看法不同。通过这篇文章,我想整理一下相关概念,并给出示例。

1 线性相关(Linear Cross-Correlation)的定义和计算
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
用一个实际的应用例子来验证一下吧。如图3的第一个子图表示雷达声纳发射了一个探测信号。经过一段时间之后,收到了如图3的第二个子图所示的回波(带有一定的噪声)。此时我们关注的是如何确定回波中从何时开始是对探测信号的响应,以便计算目标距雷达的距离,这就需要用到线性互相关。在第三个子图中的‘Valid’曲线即是有效互相关数据,其中清晰地呈现出两处与探测信号相似的回波的位置。
在这里插入图片描述
线性互相关中,还有一些概念值得注意:

1 补零。由线性相关的计算式不难发现,为了计算出个完整的相关系数序列(包含那些“无效数据”在内的所有结果),需要用到一些“不存在”的点。这就需要人为地对这些值进行补充,在线性相关的计算中,对这些超出原始数据储存的区域取值为零。
2 末端效应。由图1可以发现,一头一尾的个互相关数据并没有完全“嵌入”两个原始数组的全部信息,它们或多或少地受到了人为补零的影响。因此一般认为这些数据是不可用的。
3 计算模式的选择。这个问题其实是由问题二衍生而来的,就Python语言中的函数而言,至少有两个可以直接计算线性相关:
在这里插入图片描述
2 循环互相关(Circular Cross-Correlation)的定义和计算
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二、部分源代码

function varargout = xiangguan(varargin)
% XIANGGUAN M-file for xiangguan.fig
%      XIANGGUAN, by itself, creates a new XIANGGUAN or raises the existing
%      singleton*.
%
%      H = XIANGGUAN returns the handle to a new XIANGGUAN or the handle to
%      the existing singleton*.
%
%      XIANGGUAN('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in XIANGGUAN.M with the given input arguments.
%
%      XIANGGUAN('Property','Value',...) creates a new XIANGGUAN or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before xiangguan_OpeningFunction gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to xiangguan_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help xiangguan

% Last Modified by GUIDE v2.5 20-Apr-2014 10:31:06

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @xiangguan_OpeningFcn, ...
                   'gui_OutputFcn',  @xiangguan_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before xiangguan is made visible.
function xiangguan_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to xiangguan (see VARARGIN)

% Choose default command line output for xiangguan
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes xiangguan wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = xiangguan_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on button press in first_picture.
function first_picture_Callback(hObject, eventdata, handles)
% hObject    handle to first_picture (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
subplot(3,3,2)
[filename,pathname]=uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...
    '*.*','All Files' },'open');    %打开路径下要检索的图像
if isequal([filename,pathname],[0,0])
    return
else
    %读取图片
    pic = fullfile(pathname,filename);
   global onion;
   onion = imread(pic);
     imshow(onion); 
end

% --- Executes on button press in second_picture.
function second_picture_Callback(hObject, eventdata, handles)
% hObject    handle to second_picture (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

subplot(3,3,3)
[filename,pathname]=uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...
    '*.*','All Files' },'open');    %打开路径下要检索的图像
if isequal([filename,pathname],[0,0])
    return
else
    %读取图片
    pict = fullfile(pathname,filename);
   global peppers;
   peppers = imread(pict);
     imshow(peppers); 
end

% --- Executes on button press in correlation.
function correlation_Callback(hObject, eventdata, handles)
% hObject    handle to correlation (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
subplot(3,3,5)
global onion;
global peppers;
% non-interactively
rect_onion = [111 33 65 58];
rect_peppers = [163 47 143 151];
sub_onion = imcrop(onion,rect_onion);
sub_peppers = imcrop(peppers,rect_peppers);
c = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1));
 surf(c), shading flat

% --- Executes on button press in overlay.
function overlay_Callback(hObject, eventdata, handles)
% hObject    handle to overlay (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
subplot(3,3,6)
global onion;
global peppers;
% non-interactively
rect_onion = [111 33 65 58];
rect_peppers = [163 47 143 151];
sub_onion = imcrop(onion,rect_onion);
sub_peppers = imcrop(peppers,rect_peppers);
c = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1));
 
 % offset found by correlation
[max_c, imax] = max(abs(c(:)));
[ypeak, xpeak] = ind2sub(size(c),imax(1));
corr_offset = [(xpeak-size(sub_onion,2)) 
               (ypeak-size(sub_onion,1))];
% relative offset of position of subimages
rect_offset = [(rect_peppers(1)-rect_onion(1)) 
               (rect_peppers(2)-rect_onion(2))];
% total offset
offset = corr_offset + rect_offset;
xoffset = offset(1);
yoffset = offset(2);
xbegin = round(xoffset+1);
xend   = round(xoffset+ size(onion,2));
ybegin = round(yoffset+1);
yend   = round(yoffset+size(onion,1));
% extract region from peppers and compare to onion
extracted_onion = peppers(ybegin:yend,xbegin:xend,:);
if isequal(onion,extracted_onion) 
   disp('onion.png was extracted from peppers.png')
end
recovered_onion = uint8(zeros(size(peppers)));
recovered_onion(ybegin:yend,xbegin:xend,:) = onion;
imshow(recovered_onion)


% --- Executes on button press in transparent.
function transparent_Callback(hObject, eventdata, handles)
% hObject    handle to transparent (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
subplot(3,3,8)
global onion;
global peppers;
% non-interactively
rect_onion = [111 33 65 58];
rect_peppers = [163 47 143 151];
sub_onion = imcrop(onion,rect_onion);
sub_peppers = imcrop(peppers,rect_peppers);
c = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1));
 % offset found by correlation
[max_c, imax] = max(abs(c(:)));
[ypeak, xpeak] = ind2sub(size(c),imax(1));
corr_offset = [(xpeak-size(sub_onion,2)) 
               (ypeak-size(sub_onion,1))];
% relative offset of position of subimages
rect_offset = [(rect_peppers(1)-rect_onion(1)) 
               (rect_peppers(2)-rect_onion(2))];

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]谢凤英,姜志国.基于互相关的显微医学图像配准[J].中国体视学与图像分析. 2001,(03)

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/116230818

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。