【图像配准】基于matlab GUI互相关图像配准【含Matlab源码 853期】
一、互相关简介
在这里我想探讨一下“互相关”中的一些概念。正如卷积有线性卷积(linear convolution)和循环卷积(circular convolution)之分;互相关也有线性互相关(linear cross-correlation)和循环互相关(circular cross-correlation)。线性互相关和循环互相关的基本公式是一致的,不同之处在于如何处理边界数据。其本质的不同在于它们对原始数据的看法不同。通过这篇文章,我想整理一下相关概念,并给出示例。
1 线性相关(Linear Cross-Correlation)的定义和计算
用一个实际的应用例子来验证一下吧。如图3的第一个子图表示雷达声纳发射了一个探测信号。经过一段时间之后,收到了如图3的第二个子图所示的回波(带有一定的噪声)。此时我们关注的是如何确定回波中从何时开始是对探测信号的响应,以便计算目标距雷达的距离,这就需要用到线性互相关。在第三个子图中的‘Valid’曲线即是有效互相关数据,其中清晰地呈现出两处与探测信号相似的回波的位置。
线性互相关中,还有一些概念值得注意:
1 补零。由线性相关的计算式不难发现,为了计算出个完整的相关系数序列(包含那些“无效数据”在内的所有结果),需要用到一些“不存在”的点。这就需要人为地对这些值进行补充,在线性相关的计算中,对这些超出原始数据储存的区域取值为零。
2 末端效应。由图1可以发现,一头一尾的个互相关数据并没有完全“嵌入”两个原始数组的全部信息,它们或多或少地受到了人为补零的影响。因此一般认为这些数据是不可用的。
3 计算模式的选择。这个问题其实是由问题二衍生而来的,就Python语言中的函数而言,至少有两个可以直接计算线性相关:
2 循环互相关(Circular Cross-Correlation)的定义和计算
二、部分源代码
function varargout = xiangguan(varargin)
% XIANGGUAN M-file for xiangguan.fig
% XIANGGUAN, by itself, creates a new XIANGGUAN or raises the existing
% singleton*.
%
% H = XIANGGUAN returns the handle to a new XIANGGUAN or the handle to
% the existing singleton*.
%
% XIANGGUAN('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in XIANGGUAN.M with the given input arguments.
%
% XIANGGUAN('Property','Value',...) creates a new XIANGGUAN or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before xiangguan_OpeningFunction gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to xiangguan_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help xiangguan
% Last Modified by GUIDE v2.5 20-Apr-2014 10:31:06
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @xiangguan_OpeningFcn, ...
'gui_OutputFcn', @xiangguan_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before xiangguan is made visible.
function xiangguan_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to xiangguan (see VARARGIN)
% Choose default command line output for xiangguan
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes xiangguan wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = xiangguan_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in first_picture.
function first_picture_Callback(hObject, eventdata, handles)
% hObject handle to first_picture (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
subplot(3,3,2)
[filename,pathname]=uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...
'*.*','All Files' },'open'); %打开路径下要检索的图像
if isequal([filename,pathname],[0,0])
return
else
%读取图片
pic = fullfile(pathname,filename);
global onion;
onion = imread(pic);
imshow(onion);
end
% --- Executes on button press in second_picture.
function second_picture_Callback(hObject, eventdata, handles)
% hObject handle to second_picture (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
subplot(3,3,3)
[filename,pathname]=uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...
'*.*','All Files' },'open'); %打开路径下要检索的图像
if isequal([filename,pathname],[0,0])
return
else
%读取图片
pict = fullfile(pathname,filename);
global peppers;
peppers = imread(pict);
imshow(peppers);
end
% --- Executes on button press in correlation.
function correlation_Callback(hObject, eventdata, handles)
% hObject handle to correlation (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
subplot(3,3,5)
global onion;
global peppers;
% non-interactively
rect_onion = [111 33 65 58];
rect_peppers = [163 47 143 151];
sub_onion = imcrop(onion,rect_onion);
sub_peppers = imcrop(peppers,rect_peppers);
c = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1));
surf(c), shading flat
% --- Executes on button press in overlay.
function overlay_Callback(hObject, eventdata, handles)
% hObject handle to overlay (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
subplot(3,3,6)
global onion;
global peppers;
% non-interactively
rect_onion = [111 33 65 58];
rect_peppers = [163 47 143 151];
sub_onion = imcrop(onion,rect_onion);
sub_peppers = imcrop(peppers,rect_peppers);
c = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1));
% offset found by correlation
[max_c, imax] = max(abs(c(:)));
[ypeak, xpeak] = ind2sub(size(c),imax(1));
corr_offset = [(xpeak-size(sub_onion,2))
(ypeak-size(sub_onion,1))];
% relative offset of position of subimages
rect_offset = [(rect_peppers(1)-rect_onion(1))
(rect_peppers(2)-rect_onion(2))];
% total offset
offset = corr_offset + rect_offset;
xoffset = offset(1);
yoffset = offset(2);
xbegin = round(xoffset+1);
xend = round(xoffset+ size(onion,2));
ybegin = round(yoffset+1);
yend = round(yoffset+size(onion,1));
% extract region from peppers and compare to onion
extracted_onion = peppers(ybegin:yend,xbegin:xend,:);
if isequal(onion,extracted_onion)
disp('onion.png was extracted from peppers.png')
end
recovered_onion = uint8(zeros(size(peppers)));
recovered_onion(ybegin:yend,xbegin:xend,:) = onion;
imshow(recovered_onion)
% --- Executes on button press in transparent.
function transparent_Callback(hObject, eventdata, handles)
% hObject handle to transparent (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
subplot(3,3,8)
global onion;
global peppers;
% non-interactively
rect_onion = [111 33 65 58];
rect_peppers = [163 47 143 151];
sub_onion = imcrop(onion,rect_onion);
sub_peppers = imcrop(peppers,rect_peppers);
c = normxcorr2(sub_onion(:,:,1),sub_peppers(:,:,1));
% offset found by correlation
[max_c, imax] = max(abs(c(:)));
[ypeak, xpeak] = ind2sub(size(c),imax(1));
corr_offset = [(xpeak-size(sub_onion,2))
(ypeak-size(sub_onion,1))];
% relative offset of position of subimages
rect_offset = [(rect_peppers(1)-rect_onion(1))
(rect_peppers(2)-rect_onion(2))];
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]谢凤英,姜志国.基于互相关的显微医学图像配准[J].中国体视学与图像分析. 2001,(03)
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/116230818
- 点赞
- 收藏
- 关注作者
评论(0)