【情感识别】基于matlab KNN算法语音情感识别【含Matlab源码 542期】

举报
海神之光 发表于 2022/05/29 04:16:33 2022/05/29
【摘要】 一、 KNN算法简介 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即...

一、 KNN算法简介

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。

1 定义
如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,即由你的“邻居”来推断出你的类别.

2 距离公式
两个样本的距离可以通过如下公式计算,又叫欧式距离
在这里插入图片描述
3 KNN算法的步骤
(1)计算已知类别数据集中每个点与当前点的距离;
(2)选取与当前点距离最小的K个点;
(3)统计前K个点中每个类别的样本出现的频率;
(4)返回前K个点出现频率最高的类别作为当前点的预测分类。

4 KNN原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
5 KNN的优缺点
在这里插入图片描述
6 KNN性能问题
NN的性能问题也是KNN的缺点之一。使用KNN,可以很容易的构造模型,但在对待分类样本进行分类时,为了获得K近邻,必须采用暴力搜索的方式,扫描全部训练样本并计算其与待分类样本之间的距离,系统开销很大。

二、部分源代码

clc
clear all;
close all;

%% 载入各情感的特征向量矩阵
load A_fear.mat;
load F_happiness.mat;
load N_neutral.mat;
load T_sadness.mat;
load W_anger.mat;
NumberOfTrain=size(fearVec,2)/2; %一半测试用,一半训练用
trainVector=[fearVec(:,1:NumberOfTrain),hapVec(:,1:NumberOfTrain),neutralVec(:,1:NumberOfTrain),sadnessVec(:,1:NumberOfTrain),angerVec(:,1:NumberOfTrain)]; % 构建训练样本集
testVector=[fearVec(:,(NumberOfTrain+1):size(fearVec,2)),hapVec(:,(NumberOfTrain+1):size(hapVec,2)),neutralVec(:,(NumberOfTrain+1):size(neutralVec,2)),sadnessVec(:,(NumberOfTrain+1):size(sadnessVec,2)),angerVec(:,(NumberOfTrain+1):size(angerVec,2))]; % 构建测试样本集
k=9; %k 最近邻
distanceMatrix=zeros(size(trainVector,2),size(testVector,2)); % 每一列表示某个测试语音与所有训练集样本的距离
%% 计算每个测试样本和训练样本集各样本的距离
for i=1:size(testVector,2)
    for j=1:size(trainVector,2)
        distanceMatrix(j,i)=norm(testVector(:,i)-trainVector(:,j)); %计算欧氏距离
    end
end
%% 统计分类结果 (根据相应的特征向量在数组trainVector或testVector中所处的位置来辨别类型)
totalTestNumber=size(fearVec,2)-NumberOfTrain;
emtionCounter=zeros(1,5);
n1=NumberOfTrain;
n2=n1+NumberOfTrain;
n3=n2+NumberOfTrain;
n4=n3+NumberOfTrain;
n5=n4+NumberOfTrain;
p1=size(fearVec,2)-NumberOfTrain;
p2=p1+size(hapVec,2)-NumberOfTrain;
p3=p2+size(neutralVec,2)-NumberOfTrain;
p4=p3+size(sadnessVec,2)-NumberOfTrain;
p5=p4+size(angerVec,2)-NumberOfTrain;
if(n5~=size(trainVector,2)||p5~=size(testVector,2))
    disp('data error')
    return;
end

for i=1:size(distanceMatrix,2)
    flag=zeros(1,5);
    [sortVec,index]=sort(distanceMatrix(:,i));
    % 统计K个近邻中各类别的数量
    for j=1:k
        if(n1>=index(j)&&index(j)>=1)
            flag(1)=flag(1)+1;
        elseif(n2>=index(j)&&index(j)>n1)
            flag(2)=flag(2)+1;
        elseif(n3>=index(j)&&index(j)>n2)
            flag(3)=flag(3)+1;
        elseif(n4>=index(j)&&index(j)>n3)
            flag(4)=flag(4)+1;
        else
            flag(5)=flag(5)+1;
        end
    end
    [~,index1]=sort(flag);
    % 如果K个近邻中数量最多的类别与该样本实际的类别一致,则认为算法识别正确,相应counter加一。
    if((p1>=i&&i>=1)&&index1(5)==1)
        emtionCounter(index1(5))=emtionCounter(index1(5))+1;
       
    elseif((p2>=i&&i>p1)&&index1(5)==2)
        emtionCounter(index1(5))=emtionCounter(index1(5))+1;
        
    elseif((p3>=i&&i>p2)&&index1(5)==3)
        emtionCounter(index1(5))=emtionCounter(index1(5))+1;
        
    elseif((p4>=i&&i>p3)&&index1(5)==4)
        emtionCounter(index1(5))=emtionCounter(index1(5))+1;
       
    elseif((p5>=i&&i>p4)&&index1(5)==5)
        emtionCounter(index1(5))=emtionCounter(index1(5))+1;
       
    end

end
function feature=featvector(filename)
[y,fs]=wavread(filename); 
L=length(y);
ys=y;
for i=1:(length(y)-1)
    if (abs(y(i))<1e-3)  %  剔除较小值,计算短时能量时使用  %
        ys(i)=ys(i+1);
        L=L-1;
    end
end 
y1=ys(1:L);
s=enframe(y,hamming(256),128); %  分帧加窗  %
s1=enframe(y1,hamming(256),128); 
[nframe,framesize]=size(s);  
[nframe1,framesize1]=size(s1);
E=zeros(1,nframe1);  
Z=zeros(1,nframe);
F=zeros(1,nframe);
for i=1:nframe
    Z(i)=sum(abs(sign(s(i,framesize:2)-s(i,framesize-1:1))))/2;  %  过零率  %
end
for i=1:nframe1
    E(i)=sum(s1(i,:).*s1(i,:)); %  短时能量  %
end
s1=x2-x1;s2=x3-x4;
E_Reg_coff=s1/s2;
x=0;
for i=1:nframe1
    t=E(i)-(mean(E)-s1/s2*x4/nframe1)-s1/s2*i;
    x=x+t^2/nframe1;
end
E_Sqr_Err=x;
feature(1:7,1)=[max(E);min(E);mean(E);var(E);E_shimmer;E_Reg_coff;E_Sqr_Err];%  短时能量相关特征  %

%  能量比  %
feature(8,1)=Eratio;

end

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.
[3]叶斌.基于HMM和PNN的语音情感识别研究.[J]青岛大学学报(工程技术版). 2011,26(04)

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/114954101

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。