【细胞分割】基于matlab GUI阙值+边缘+形态学+种子点图像分割【含Matlab源码 615期】

举报
海神之光 发表于 2022/05/29 01:46:38 2022/05/29
【摘要】 一、图像分割简介 理论知识参考:【基础教程】基于matlab图像处理图像分割【含Matlab源码 191期】 二、部分源代码 function varargout = bishe2(varargin...

一、图像分割简介

理论知识参考:【基础教程】基于matlab图像处理图像分割【含Matlab源码 191期】

二、部分源代码

function varargout = bishe2(varargin)
% BISHE2 MATLAB code for bishe2.fig
%      BISHE2, by itself, creates a new BISHE2 or raises the existing
%      singleton*.
%
%      H = BISHE2 returns the handle to a new BISHE2 or the handle to
%      the existing singleton*.
%
%      BISHE2('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in BISHE2.M with the given input arguments.
%
%      BISHE2('Property','Value',...) creates a new BISHE2 or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before bishe2_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to bishe2_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help bishe2

% Last Modified by GUIDE v2.5 26-Nov-2020 16:50:25

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @bishe2_OpeningFcn, ...
                   'gui_OutputFcn',  @bishe2_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end

% End initialization code - DO NOT EDIT


% --- Executes just before bishe2 is made visible.
function bishe2_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to bishe2 (see VARARGIN)

% Choose default command line output for bishe2
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes bishe2 wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = bishe2_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on button press in pushbutton1.
%% 按钮实现打开文件功能
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global yuantu;
%文件打开对话框
[filename,pathname]=uigetfile({'*.bmp';'*.jpg';'*.gif'},'选择图片'); 
if isequal(filename,0)|isequal(pathname,0)
    errordlg('没有打开图像','出错');
return;
else
file=[pathname,filename];
yuantu=imread(file);%读入图像
%设置显示的坐标轴
axes(handles.axes1);
%显示图像
imshow(yuantu);title('原始图像');
end

% --- Executes on button press in pushbutton2.
%% 按钮实现图像灰度化
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global yuantu;
axes(handles.axes2);
f= rgb2gray(yuantu);
imshow(f);title('灰度图像');

% --- Executes on button press in pushbutton3.
%% 按钮实现基于阈值的细胞分割算法
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global yuantu;
axes(handles.axes3);
%%%%%%%%%%%%%%%大松算法
level=graythresh(yuantu);     %确定灰度阈值  
BW=im2bw(yuantu,level);  
imshow(BW); 
title('基于阈值的细胞分割');

% --- Executes on button press in pushbutton4.
%% 按钮实现基于边缘的细胞分割算法
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton4 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global yuantu;
%将axes4作为当前的坐标轴
axes(handles.axes4);
%获取popupmenu1的句柄为c
c=get(handles.popupmenu1,'value');
f=im2bw(yuantu);
[g_sobel_default , ts] = edge(f, 'sobel');
[g_log_default,tlog]=edge(f, 'log');
[g_canny_default,tc]=edge(f, 'canny' ); 
[g_prewitt_default,tp]=edge(f, 'prewitt');
[g_roberts_default,tr]=edge(f, 'roberts' );
g_sobel_best=edge(f, 'sobel' ,0.25);
g_log_best=edge(f, 'log',0.003,2.25);
g_canny_best=edge(f, 'canny' ,[0.04 0.10],1.5);
switch c
    case 1 %使用sobel算子边缘检测  
        imshow(g_sobel_default);title('sobel图像边缘提取(自动阈值)');
    case 2 %使用log特算子边缘检测 
        imshow(g_log_default);title('log图像边缘提取(自动阈值)');
    case 3 %使用canny算子边缘检测
        imshow(g_canny_default);title('canny图像边缘提取(自动阈值)');
    case 4 %使用log特算子边缘检测 
        imshow(g_prewitt_default);title('prewitt图像边缘提取(自动阈值)');
    case 5 %使用canny算子边缘检测
        imshow(g_roberts_default);title('Roberts图像边缘提取(自动阈值)');
    case 6 %使用sobel算子边缘检测  
        imshow(g_sobel_best);title('sobel算子边缘检测');
    case 7 %使用log特算子边缘检测 
        imshow(g_log_best);title('log算子边缘检测');
    case 8 %使用canny算子边缘检测
        imshow(g_canny_best);title('canny算子边缘检测');
    case 9
        blood=rgb2gray(yuantu);
        [m,n]=size(blood);                % 求出图象大小
        b=double(blood);                  % 将blood转为双精度浮点类型
        N =sqrt(100) * randn(m,n);        % 生成方差为10的白噪声
        I=b+N;                            % 噪声干扰图象
        z0=max(max(I));                   % 求出图象中最大的灰度
        z1=min(min(I));                   % 最小的灰度 
        T=(z0+z1)/2;                      % 求最大和最小灰度的平均值
        TT=0;
        S0=0; n0=0;
        S1=0; n1=0;
        allow=0.5;                       % 新旧阈值的允许接近程度
        d=abs(T-TT);                     % 数的绝对值
        count=0;                         % 记录几次循环

        while(d>=allow)                  % 迭代最佳阈值分割算法
            count=count+1;
            for i=1:m
                for j=1:n
                    if (I(i,j)>=T)
                        S0=S0+I(i,j);    % 图像中各个大于平均灰度值的点的灰度之和
                        n0=n0+1;         % 图像中各个大于平均灰度值的点的总数
                    end
                    if (I(i,j)<T)        
                        S1=S1+I(i,j);    % 图像中各个小于平均灰度值的点的灰度之和
                        n1=n1+1;         % 图像中各个小于平均灰度值的点的总数
                    end
                end
            end 
            T0=S0/n0;                    % 所有大于平均灰度值的点的平均灰度值
            T1=S1/n1;                    % 所有小于平均灰度值的点的平均灰度值
            TT=(T0+T1)/2;                % 平均值
            d=abs(T-TT);                 % 两个平均值的差
            T=TT;
        end

        Seg=zeros(m,n);
        for i=1:m
            for j=1:n
                if(I(i,j)>=T)
                    Seg(i,j)=1;               % 阈值分割的图象
                end
            end
        end

        SI=1-Seg;                               % 阈值分割后的图象求反,便于用腐蚀算法求边缘
        se1=strel('square',3);               % 定义腐蚀算法的结构   strel是构建形态学运算中的结构元素函数
        SI1=imerode(SI,se1);                 % 腐蚀算法
        BW=SI-SI1;                           % 边缘检测
        imshow(BW);title('New algorithm');

end

% --- Executes on button press in pushbutton5.
%% 按钮实现基于形态学的细胞分割算法 来提取边界
function pushbutton5_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton5 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
global yuantu;
num=0;                                                                     % 图像位置计数
rowi=3;                                                                    % 图像显示行数
colui=3;                                                                   % 图像显示列数
%%%%%%%%%%% 读入图像 %%%%%%%
I=yuantu;
num=num+1;figure(1),subplot(rowi,colui,num),imshow(I),title('原图');           % 显示
%%%%%%%%%% 程序开始,计算时间 %%%%%%%%%%
tic                                                                        % tic 和 toc 为程序运行时间的计算
%%%%%%%%%% 灰度化 %%%%%%%%%%
Igray = rgb2gray(I);
num=num+1;figure(1),subplot(rowi,colui,num),imshow(Igray),title('灰度化');
%%%%%%%%%% 填充--灰度重构 %%%%%%%%%%
Ifill = imfill(Igray,'holes');%填充二值图像中的空洞区域。 如,黑色的背景上有个白色的圆圈。则这个圆圈内区域将被填充。
num=num+1;figure(1),subplot(rowi,colui,num),imshow(Ifill),title('灰度重构');
%%%%%% 二值化阈值选取过程 %%%%%
%%% 第一步,淋巴细胞不会在视场边缘,因此选择处理比视场小的图像范围,减少背景
[m,n]=size(Ifill);                                                         % 图像大小
Ifilltest=Ifill(40:m-50,60:n-50);                                          % 40-23860-302
%%% 第二步,直方图
[yout,xx]=imhist(Ifilltest);                                               % yout为统计的个数,xx为相应的灰度值
num=num+1;figure(1),subplot(rowi,colui,num),imhist(Ifilltest),title('直方图');
%%% 重构后淋巴细胞的灰度比白细胞灰度低,因此选择灰度低于220的直方图中的最大值
%%% 对应的灰度作为阈值
%%% 重构的时候,只在闭合区域进行填充--设置成相同的灰度值,不同区域设置成不同的灰度
%%% 虽然背景区域看上去比目标区域大,但是未闭合,未填充,没有相同的灰度值,虽然看上去灰度比较相近,但是,灰度值不同
%%% 因此,在选择阈值的时候,还是选择最大区域的灰度作为阈值
yout = yout(1:255);                                                        % 可以修改,保证重构之后的目标灰度在所选范围内
[yy,P]=max(yout);                                                          % yy返回直方图最高的个数,P为相应灰度值
P = P-1;                                                                   % P即为阈值
%%%%%%%%%% 二值化 %%%%%%%%%%
Ib = binarize1(Ifill,P);                                                   % 自编函数binarize1
num=num+1;figure(1),subplot(rowi,colui,num),imshow(Ib),title('二值化');                                  
%%%%%%%%%% 去小区域 %%%%%%%%%%%
Io = bwareaopen(Ib, 500);                                                  % 形态学开运算,去小区域
num=num+1;figure(1),subplot(rowi,colui,num),imshow(Io),title('去小区域');
%%%%%%%%%% 填充孔洞 %%%%%%%%%%%
Iend = imfill(Io,'holes');  
num=num+1;figure(1),subplot(rowi,colui,num),imshow(Iend),title('填充孔洞');
% 此时I中白色区域,即为淋巴细胞所在的区域
% 先找到像素最多的一列,即最长的一列
[H, col] = max(sum(Iend));                                                 % 对每一列求和,H为最大值,col为所在行
% 再找到该列上最低点
row = min(find(Iend(:, col)));                                              
%row = find(I(:, col),'first');
% [row, col]为求边界曲线的初始点                                            
boundary = bwtraceboundary(Iend, [row, col], 'N');                         % 找出图像的边界点坐

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240
  • 241
  • 242
  • 243
  • 244
  • 245
  • 246
  • 247
  • 248
  • 249
  • 250
  • 251
  • 252
  • 253
  • 254
  • 255
  • 256
  • 257
  • 258
  • 259
  • 260
  • 261
  • 262
  • 263
  • 264
  • 265
  • 266

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]赵勇,方宗德,庞辉,王侃伟.基于量子粒子群优化算法的最小交叉熵多阈值图像分割[J].计算机应用研究. 2008,(04)

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/115149804

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。