【运动学】基于matlab GUI地球自转模拟【含Matlab源码 1115期】

举报
海神之光 发表于 2022/05/29 04:17:02 2022/05/29
【摘要】 一、获取代码方式 获取代码方式1: 完整代码已上传我的资源:【运动学】基于matlab GUI地球自转模拟【含Matlab源码 1115期】 获取代码方式2: 通过订阅紫极神光博客付费专栏,凭支付凭证...

一、获取代码方式

获取代码方式1:
完整代码已上传我的资源:【运动学】基于matlab GUI地球自转模拟【含Matlab源码 1115期】

获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);

二、部分源代码

function varargout = globegui(varargin)
% GLOBEGUI M-file for globegui.fig created with GUIDE
%
%      Creates a GUI for viewing a spinning Earth globe
%
%      GLOBEGUI, by itself, creates a new GLOBEGUI or raises the existing
%      one.
%
%      H = GLOBEGUI returns the handle to a new GLOBEGUI or the handle to
%      the existing one.
%
%      GLOBEGUI('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in GLOBEGUI.M with the given input arguments.
%
%      GLOBEGUI('Property','Value',...) creates a new GLOBEGUI or raises the
%      existing one. Starting from the left, property value pairs are
%      applied to the GUI before globegui_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to globegui_OpeningFcn via varargin.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Last Modified by GUIDE v2.5 10-Mar-2021 09:50:13

%  

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @globegui_OpeningFcn, ...
                   'gui_OutputFcn',  @globegui_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before globegui is made visible.
function globegui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to globegui (see VARARGIN)

% Check whether initialization has been done in case this GUI
% is a singleton and has already been opened.
% if isfield(handles,'running')
%     disp('No initialization this time.')
% else
%     handles.running = true;
%     guidata(hObject,handles)
%     disp('Initializing...')
% end

% Choose default command line output for globegui
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);

% UIWAIT makes globegui wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = globegui_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on button press in spinstopbutton.
function spinstopbutton_Callback(hObject, eventdata, handles)
% Spins the globe in the axes or stops it, renaming the button
% from "Spin" to "Stop" and back again. When its label is "Stop"
% this callback is executing an endless loop and is re-entered; 
% thus it must have properties set as follows (which is the
% default behavior of a GUIDE GUI):
%  Interruptible: 'on', BusyAction: 'queue'
%
% hObject    handle to spinstopbutton (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

str = get(hObject,'String');    % get the current pushbutton string 
% Determine which string the label matches 
state = find(strcmp(str,handles.Strings)); 
% Toggle the button label to other string 
set(hObject,'String',handles.Strings{3-state}); 
% If the index when entering was 1, start to spin the object
if (state == 1)
 %   globe = struct;
    filming = handles.movie;
    az = handles.azimuth;
    hgrotate = handles.tform;
    % Spin globe as long as the figure exists or until user
    %  interrupts by pressing the button a second time
    while ishandle(handles.axes1)
        % If button label changed since last iteration, stop now
        if find(strcmp(get(hObject,'String'),...
                handles.Strings)) == 1
            % Save rotation state to restart at this orientation
            handles.azimuth = az;
            guidata(hObject,handles);
            break
        end
        az = az + 0.01745329252; % Increment azimuth (in radians)
                                 % to rotate east one degree
        % Modify the hgtransform controling the two surface objects
        set(hgrotate,'Matrix',makehgtform('zrotate',az));
        drawnow                  % Refresh the screen
        % If the Make movie button is checked, save frames
        %   but don't store more than one revolution
        %  NOTE: filming slows down the animation
        % Need to test whether axes exists because user can quit
        % during filming, destroying axes and figure
        if ishandle(handles.axes1) && filming > 0 && filming < 361
            globeframes(filming) = getframe(handles.axes1);
            filming = filming + 1;
        end
    end
    % Write captured frames to MAT-file if in movie mode
    if (filming)
        filename = sprintf('globe%i.mat',filming-1);
        disp(['Writing movie to file ' filename]);
        save (filename, 'globeframes')
    end
 end


% --- Executes on button press in quitbutton.
function quitbutton_Callback(hObject, eventdata, handles)
% hObject    handle to quitbutton (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
%handles = guidata(hObject);

% Get the figure's handle, then destroy it
fig = handles.figure1;
close(fig)


% --- Executes during object creation, after setting all properties.
function spinstopbutton_CreateFcn(hObject, eventdata, handles)
% hObject    handle to spinstopbutton (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - not created until after all CreateFcns called
% Creates the handles structure and places into it label strings
%  to test button's current name against
handles.Strings = {'Spin';'Stop'}; 
% Commit the new struct element to appdata
guidata(hObject, handles); 


% --- Executes during object creation, after setting all properties.
function axes1_CreateFcn(hObject, eventdata, handles)
% hObject    handle to axes1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - not created until after all CreateFcns called

% Hint: place code in OpeningFcn to populate axes1

% Generate a colormap appropriate for terrain display
cmap =  [0         0    0.2000;         0         0    0.2471;...
         0         0    0.2941;         0         0    0.3412;...
         0         0    0.3882;         0         0    0.4353;...
         0         0    0.4824;         0         0    0.5294;...
         0         0    0.5765;         0         0    0.6235;...
         0         0    0.6706;         0         0    0.7176;...
         0         0    0.7647;         0         0    0.8118;...
         0         0    0.8588;         0         0    0.9059;...
         0         0    0.9529;         0         0    1.0000;...
         0    0.0556    1.0000;         0    0.1111    1.0000;...
         0    0.1667    1.0000;         0    0.2222    1.0000;...
         0    0.2778    1.0000;         0    0.3333    1.0000;...
         0    0.3889    1.0000;         0    0.4444    1.0000;...
         0    0.5000    1.0000;         0    0.5556    1.0000;...
         0    0.6111    1.0000;         0    0.6667    1.0000;...
         0    0.7222    1.0000;         0    0.7778    1.0000;...
         0    0.8333    1.0000;         0    0.8889    1.0000;...
         0    0.9444    1.0000;         0    1.0000    1.0000;...
         0    0.4000    0.2000;    0.0253    0.4429    0.2043;...
    0.0555    0.4857    0.2092;    0.0906    0.5286    0.2157;...
    0.1306    0.5714    0.2251;    0.1755    0.6143    0.2382;...
    0.2253    0.6571    0.2562;    0.2800    0.7000    0.2800;...
    0.3684    0.7429    0.3396;    0.4586    0.7857    0.4041;...
    0.5496    0.8286    0.4735;    0.6402    0.8714    0.5478;...
    0.7296    0.9143    0.6269;    0.8165    0.9571    0.7110;...
    0.9000    1.0000    0.8000;    0.8499    0.9538    0.7044;...
    0.8099    0.9077    0.6144;    0.7787    0.8615    0.5302;...
    0.7548    0.8154    0.4516;    0.7367    0.7692    0.3787;...
    0.7231    0.7231    0.3115;    0.6769    0.6413    0.2499;...
    0.6308    0.5580    0.1941;    0.5846    0.4744    0.1439;...
    0.5385    0.3921    0.0994;    0.4923    0.3124    0.0606;...
    0.4462    0.2368    0.0275;    0.4000    0.1667         0];

load topo                       % Get 1x1 degree terrain grid
% Make axes a slightly oversized unit box centered on 0,0,0
set(hObject,'xlim',[-1.02 1.02],...
            'ylim',[-1.02 1.02],...
            'zlim',[-1.02 1.02]);
% Create a spherical structure
[x,y,z] = sphere(50);
hgttilt = hgtransform;
hgrotate = hgtransform('parent',hgttilt);
% Set display properties
props.FaceColor= 'texture';
props.EdgeColor = 'none';
props.FaceLighting = 'gouraud';
props.Cdata = topo;             % Use topo grid as a texturemap
props.Parent = hgrotate;              % Make hgtransform surface parent
hsurf = surface(x,y,z,props);   % Draw 3-D view
colormap(cmap)      % Use special terrain colormap defined above

% Rotate the surface by 23.44 deg (0.4091 radians) around x-axis;
%   this is the earth's tilt from normal to the ecliptic.
%   To learn about geometric operations, type "doc hgtransform".
set(hgttilt,'Matrix',makehgtform('xrotate',0.4091));

% Create another mesh to be the graticule
[gx,gy,gz] = sphere(15);
% Decimate every other row to make mesh elements square
for j = 2:9
    gx(j,:) = [];
    gy(j,:) = [];
    gz(j,:) = [];
end

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210
  • 211
  • 212
  • 213
  • 214
  • 215
  • 216
  • 217
  • 218
  • 219
  • 220
  • 221
  • 222
  • 223
  • 224
  • 225
  • 226
  • 227
  • 228
  • 229
  • 230
  • 231
  • 232
  • 233
  • 234
  • 235
  • 236
  • 237
  • 238
  • 239
  • 240

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 门云阁.MATLAB物理计算与可视化[M].清华大学出版社,2013.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/118771584

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。