【图像修复】基于matlab损坏图像修复【含Matlab源码 731期】

举报
海神之光 发表于 2022/05/29 03:23:45 2022/05/29
【摘要】 一、获取代码方式 获取代码方式1: 完整代码已上传我的资源:【图像修复】基于matlab损坏图像修复【含Matlab源码 731期】 获取代码方式2: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博...

一、获取代码方式

获取代码方式1:
完整代码已上传我的资源:【图像修复】基于matlab损坏图像修复【含Matlab源码 731期】

获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);

二、部分源代码

clc; clear all;
%First part
%reading img1, saving as im1 variable
im1 = imread('img1.jpg');
%for boundary it's a must to convert to gray
im1 = rgb2gray(im1);
subplot(331), imshow(im1), title('Img1 convert to gray');
% as a mask all colors will be white or black
mask = im1 < 255;
subplot(332), imshow(mask), title('Apply a mask');
%invert colors, otherwise the boundary sees nearly
%the whole image, need to swap colors
mask = imcomplement(mask);
subplot(333), imshow(mask), title('Invert colors');
%gives location x y coordinates where is the first area, 
%it starts there too
%if don't have ; at the end, it shows the dimensions of 
%the image
dim = size(mask)
col = round(dim(2)/2)-90;
row = min(find(mask(:,col)))

%an interesting drawback, if I would fill the "holes"
%with erode function which is better then imfill, the
%program can't see any of the boundaries, hence in the
%for loop I had to use 180 rounds, otherwise can't see
%the big parts.
%erode image
% se = strel('line',10, 90);
% boundaries = imerode(mask,se);
% imshow(boundaries);

%use bwtraceboundary function to find the boundary from
%the above declared point.
%it needs a binary image, row and col coordinates for start
%and direction, W for west so left.
boundary = bwtraceboundary(mask,[row, col],'W');
subplot(334), imshow(im1), title('Boundaries');
hold on;
plot(boundary(:,2),boundary(:,2),'g','LineWidth',4);
%the imfill fills the smaller objects. However, as I 
%mentioned above the erode function does better job.
%Unfortunately, with that result the for loop cannot
%find any boundaries, despite the imshow(mask)black&white
%image looks better.
BW_filled = imfill(mask,'holes');
boundaries = bwboundaries(BW_filled);
%shows the border of all white part, with the imfill
%function the for loop must iterate 180 times, hilarious.
%Under 180 it doesn't find the last top right big white
%object.
for k=1:180
   b = boundaries{k};
   plot(b(:,2),b(:,1),'g','LineWidth',4);
end

%Second part
%denoise test; averaging or median filter
im2 = imread('Penguins.jpg');
im2 = imresize(im2, [768, 1024]);
rgbImage = im2;
subplot(335), imshow(rgbImage), title('Resized but noisy Img2');
%averaging filter
mat = ones(5,5)/25;
averagingFilter_im2 = imfilter(rgbImage, mat);
subplot(336), imshow(averagingFilter_im2), title('Img2 averaging filter');

%median filter
for k=1:3
medianFilter_im2(:,:,k)=medfilt2(rgbImage(:,:,k),[3,3]);
end
subplot(337), imshow(medianFilter_im2), title('Img2 median filter');

%Third part
im1 = imread('img1.jpg');
recoveredImage = im1;
recoveredImageMedianFilter = im1;

zero = recoveredImage == 255;
recoveredImage(zero) = averagingFilter_im2(zero);

zero1 = recoveredImageMedianFilter == 255;
recoveredImage(zero1) = averagingFilter_im2(zero1);
recoveredImageMedianFilter(zero1) = medianFilter_im2(zero);

subplot(338), imshow(recoveredImage), title('Recovered image with averaging filter');
subplot(339), imshow(recoveredImageMedianFilter), title('Recovered image with median filter');
%Compare recoveredImage and originalImage
 
meanRecoveredIm = mean(recoveredImage(:))
meanOriginalIm = mean(originalImage(:))
%It coutns the Structural Similarity Index (SSIM) value
%for original and recovered image.
ssimValue = ssim(originalImage, recoveredImage)
%It counts the Peak Signal to Noise Ratio value
%for original and recovered image. They must be the same
%class and size as well.
peaks2NoiseRatio = psnr(originalImage, recoveredImage)
%It counts the Mean Squared Error (MSE) between arrays
%of the 2 declared variable, currently the original and the recovered image.
meanSquaredErr = immse(originalImage, recoveredImage)

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/115527169

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。