【交通标志识别】基于matlab GUI矩匹配算法路标识别【含Matlab源码 1175期】
【摘要】
一、矩匹配算法简介
图像的矩是归一化的灰度级图像的二维随机变量的概率密度,是一个统计学特征。OpenCV中实现了这个矩的算子是Moments();其中分为零阶矩M00、一阶矩M10和M01、二阶矩M20...
一、矩匹配算法简介
图像的矩是归一化的灰度级图像的二维随机变量的概率密度,是一个统计学特征。OpenCV中实现了这个矩的算子是Moments();其中分为零阶矩M00、一阶矩M10和M01、二阶矩M20,M02和M11;其中当图像为二值图时,M00是图像面积(白色区域)的总和,或者说连通域的面积;而这时M10和M01是图像白色区域上x和y坐标值的累计,所以图像的的重心(Xc,Yc)可以由:
Xc=M10/M00;
Yc=M01/M00;
图像的二阶矩一般用来求图像的方向,方法是:
二、部分源代码
function varargout = FeatureExtraction_New(varargin)
% FEATUREEXTRACTION_NEW M-file for FeatureExtraction_New.fig
% FEATUREEXTRACTION_NEW, by itself, creates a new FEATUREEXTRACTION_NEW or raises the existing
% singleton*.
%
% H = FEATUREEXTRACTION_NEW returns the handle to a new FEATUREEXTRACTION_NEW or the handle to
% the existing singleton*.
%
% FEATUREEXTRACTION_NEW('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in FEATUREEXTRACTION_NEW.M with the given input arguments.
%
% FEATUREEXTRACTION_NEW('Property','Value',...) creates a new FEATUREEXTRACTION_NEW or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before FeatureExtraction_New_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to FeatureExtraction_New_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help FeatureExtraction_New
% Last Modified by GUIDE v2.5 20-Jul-2010 09:42:25
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @FeatureExtraction_New_OpeningFcn, ...
'gui_OutputFcn', @FeatureExtraction_New_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before FeatureExtraction_New is made visible.
function FeatureExtraction_New_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to FeatureExtraction_New (see VARARGIN)
global Pic_num;
Pic_num=0;
% Choose default command line output for FeatureExtraction_New
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes FeatureExtraction_New wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = FeatureExtraction_New_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Pic;
global Pic_gray;
global fname;
global Pic_num;
[fname, pname, index] = uigetfile({'*bmp;*.jpg';'*.gif'},'读取图片');
if index==1
Pic_num=Pic_num+1;
str = [pname fname];
Pic=imread(str);
set(handles.text1,'string',fname);
axes(handles.axes1);
imshow(Pic);
end
axes(handles.axes2);
Pic_gray=rgb2gray(Pic);
imshow(Pic_gray);
[u,n2,e,K,energy,ENTROPY]=Pic_gray_count(Pic_gray); % 计算灰度图像的种种特征并显示
set(handles.u,'string',num2str(u)); %均值
set(handles.n2,'string',num2str(n2)); %方差
set(handles.e,'string',num2str(e)); %偏度
set(handles.K,'string',num2str(K)); %峰度
set(handles.energy,'string',num2str(energy));%能量
set(handles.ENTROPY,'string',num2str(ENTROPY));%熵
score=25.0*ENTROPY/20+25.0*1000/n2+25.0*4/K+25.0*8/abs(u-128); % 计算评分值,给出结果
score_result='优';
if score<60
score_result='差';
elseif score<70
score_result='中';
elseif score<80
score_result='良';
else
score_result='优';
end
set(handles.good_or_bad,'string',score_result);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% [R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,average]=Pic_Red_Outstand(Pic,sliderValue,Pic_R_rate)
% % 将图片 Pic 中的红色分量突出来,适用于对小的,完整的,占据整个图片的路标的处理,对大图片中的小路标的处理效果不好
% 如果阈值 sliderValue 为负数,则为利用计算出的默认average 作为阈值,调整突出的红色部分的多少
% 如果阈值 sliderValue 非负数,则根据 sliderValue 作为阈值,调整突出的红色部分的多少
% R_G 为 R_G=0.5*(2*Pic_double(:,:,1)-Pic_double(:,:,2)-Pic_double(:,:,3));
% R_G_gray 为 R_G 所构成的灰度图像
% R_G_binary 是与阈值 average 或 sliderValue 相关的R_G_gray 的二值化图像,
% 当红色分量太大,R_G_binary 比 R_G_binary_real 效果更好
% R_G_binary_real 是 R_G_binary 经过修正的 R_G_gray 的二值化图像
% average 为计算出的阈值
% Pic_pattern 描述图片 Pic 的分类情况
% Pic_R_rate 至关重要的变量!
% 当对小图片(路标的四周靠近图片的四周)处理时,路标(红色)的比例为0.37较好,默认为 0.4
% 当对大图片(路标在图片中只占一个较小的区域)时,路标的比例很小,默认为 0(即启用修正)
% 当 R_hao>Pic_R_rate 时,启用修正,否则不启用修正
global Pic;
global Pic_pattern_new;
[R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,-1,0.4); % 0.4 突出红色分量
set(handles.text5,'string',num2str(average));
axes(handles.axes3);
imshow(R_G_gray);
axes(handles.axes4);
imshow(R_G_binary);
axes(handles.axes5);
imshow(R_G_binary_real);
% figure;
% surf(Pic_pattern_new);
Pic_pattern_temp=0;
[a,b]=size(Pic_pattern_new);
for i=1:a % 将分类转变为彩色图片显示出来
for j=1:b
if Pic_pattern_new(i,j)==-1
Pic_pattern_temp(i,j,1:3)=[0,0,0];
end
if Pic_pattern_new(i,j)==1
Pic_pattern_temp(i,j,1:3)=[255,0,0];
end
if Pic_pattern_new(i,j)==2 % 第二类(大于平均阈值的一类)标为绿色
Pic_pattern_temp(i,j,1:3)=[0,255,0];
end
if Pic_pattern_new(i,j)==3 % 第三类(小于平均阈值的一类)标为蓝色
Pic_pattern_temp(i,j,1:3)=[0,0,255];
end
end
end
axes(handles.axes6);
imshow(Pic_pattern_temp);
% --- Executes on slider movement.
function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range of slider
global Pic;
global Pic_pattern_new;
sliderValue = get(handles.slider1,'Value');
sliderValue =round(sliderValue);
set(handles.text3,'String', num2str(sliderValue));
num2str(sliderValue)
[R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,sliderValue,0.4); % 突出红色分量
set(handles.text5,'string',num2str(average));
axes(handles.axes3);
imshow(R_G_gray);
axes(handles.axes4);
imshow(R_G_binary);
axes(handles.axes5);
imshow(R_G_binary_real);
Pic_pattern_temp=0;
[a,b]=size(Pic_pattern_new);
for i=1:a % 将分类转变为彩色图片显示出来
for j=1:b
if Pic_pattern_new(i,j)==-1
Pic_pattern_temp(i,j,1:3)=[0,0,0];
end
if Pic_pattern_new(i,j)==1
Pic_pattern_temp(i,j,1:3)=[255,0,0];
end
if Pic_pattern_new(i,j)==2
Pic_pattern_temp(i,j,1:3)=[0,255,0];
end
if Pic_pattern_new(i,j)==3
Pic_pattern_temp(i,j,1:3)=[0,0,255];
end
end
end
axes(handles.axes6);
imshow(Pic_pattern_temp);
% --- Executes during object creation, after setting all properties.
function slider1_CreateFcn(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns called
% Hint: slider controls usually have a light gray background.
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
set(hObject,'BackgroundColor',[.9 .9 .9]);
end
% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Pic;
global Pic_pattern_new;
slider_value=str2num(get(handles.text3,'string'));
average=str2num(get(handles.text5,'string'));
if slider_value>0
[R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,slider_value,1);
else
[R_G,R_G_gray,R_G_binary,R_G_binary_real,Pic_pattern,Pic_pattern_new,average]=Pic_Red_Outstand(Pic,average,1);
end
figure;
surf(Pic_pattern_new);
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
global Pic_pattern_new;
global fname;
global Pic_num;
[fname_a,fname_b]=size(fname);
fname_new=fname(1,1:fname_b-4);
load('fname_array.mat'); % 生成并保存图像名称构成的数组
if Pic_num==1 %清空数据库中的数据
fname_array=' ';
end
fname_array(Pic_num,1:fname_b-4)=fname_new;
save 'fname_array.mat' fname_array;
load('signpost_data.mat'); % 生成并保存矩的相关结果构成的数组
if Pic_num==1 %清空数据库中的数据
signpost_data=0;
end
Pic_binary_1=0; % 由 Pic_pattern_new 生成不同三类的二值化图像,以便计算矩
Pic_binary_2=0;
Pic_binary_3=0;
[a,b]=size(Pic_pattern_new);
for i=1:a
for j=1:b
if Pic_pattern_new(i,j)==1
Pic_binary_1(i,j)=0;
else
Pic_binary_1(i,j)=1;
end
if Pic_pattern_new(i,j)==2
Pic_binary_2(i,j)=0;
else
Pic_binary_2(i,j)=1;
end
if Pic_pattern_new(i,j)==3
Pic_binary_3(i,j)=0;
else
Pic_binary_3(i,j)=1;
end
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
- 215
- 216
- 217
- 218
- 219
- 220
- 221
- 222
- 223
- 224
- 225
- 226
- 227
- 228
- 229
- 230
- 231
- 232
- 233
- 234
- 235
- 236
- 237
- 238
- 239
- 240
- 241
- 242
- 243
- 244
- 245
- 246
- 247
- 248
- 249
- 250
- 251
- 252
- 253
- 254
- 255
- 256
- 257
- 258
- 259
- 260
- 261
- 262
- 263
- 264
- 265
- 266
- 267
- 268
- 269
- 270
- 271
- 272
- 273
- 274
- 275
- 276
- 277
- 278
- 279
- 280
- 281
- 282
- 283
- 284
- 285
- 286
- 287
- 288
- 289
- 290
- 291
- 292
- 293
- 294
- 295
- 296
- 297
- 298
- 299
- 300
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]陈浩,方勇,朱大洲,王成,陈子龙.基于蚁群算法的玉米植株热红外图像边缘检测[J].农机化研究. 2015,37(06)
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/119896295
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)