【图像修复】基于matlab GUI自适应空间滤波图像修复【含Matlab源码 840期】

举报
海神之光 发表于 2022/05/29 00:58:59 2022/05/29
【摘要】 一、获取代码方式 获取代码方式1: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。 获取代码方式2: 完整代码已上传我的资源:【图像修复】基于matlab GUI自适应空间滤波图像...

一、获取代码方式

获取代码方式1:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

获取代码方式2:
完整代码已上传我的资源:【图像修复】基于matlab GUI自适应空间滤波图像修复【含Matlab源码 840期】

备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);

二、自适应滤波器简介

自适应滤波器由参数可调的数字滤波器和自适应算法两部分组成。 自适应滤波与维纳滤波、卡尔曼滤波最大的区别在于,自适应滤波在输出与滤波系统之间存在有反馈通道,根据某一时刻滤波器的输出与期望信号的误差调整滤波器的系数,从而实现滤波器系数的动态调整,实现最优滤波。

1 信号模型
自适应滤波的目的仍然是从观测信号中提取真实准确的期望信号,因此涉及到的信号有:
1)期望信号 d(n)
2)输入信号 x(n)=d(n)+v(n)
3)输出信号 y(n)

2 算法原理
一个M阶滤波器,系数为w(m),则输出为:y(n)=Σw(m)x(n-m) m=0…M,写成矩阵形式:y(j)=WT(j)*X(j),n时刻的输出误差为: e(j)=d(j)-y(j)= d(j)- WT(j)X(j),
定义目标函数为 E[e(j)2],则有:J(j)=E[e(j)2]= E[(d(j)- WT(j)X(j))^2]。
当上述误差达到最小时,即实现最优滤波,这种目标函数确定的为最小方差自适应滤波。对于目标函数J(j),需要求得使其取到最小值对应的W,这里使用梯度下降法进行最优化:W(j+1)=W(j)+1/2
μ(-▽J(j))
▽J(j)=-2E[X(j)
( d(j)- WT(j)*X(j))]= -2E[X(j)e(j)]
W(j+1)=W(j)+μE[X(j)e(j)]
其中-2X(j)e(j)称为瞬时梯度,因为瞬时梯度是真实梯度的无偏估计,这里可以使用瞬时梯度代替真实梯度。W(j+1)=W(j)+μX(j)e(j)
由此,可以得到自适应滤波最佳系数的迭代公式。

三、部分源代码

function varargout = adpmedian_filter(varargin)
% ADPMEDIAN_FILTER M-file for adpmedian_filter.fig
%      ADPMEDIAN_FILTER, by itself, creates a new ADPMEDIAN_FILTER or raises the existing
%      singleton*.
%
%      H = ADPMEDIAN_FILTER returns the handle to a new ADPMEDIAN_FILTER or the handle to
%      the existing singleton*.
%
%      ADPMEDIAN_FILTER('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in ADPMEDIAN_FILTER.M with the given input arguments.
%
%      ADPMEDIAN_FILTER('Property','Value',...) creates a new ADPMEDIAN_FILTER or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before adpmedian_filter_OpeningFunction gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to adpmedian_filter_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help adpmedian_filter

% Last Modified by GUIDE v2.5 06-Jul-2009 20:13:38

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @adpmedian_filter_OpeningFcn, ...
                   'gui_OutputFcn',  @adpmedian_filter_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin & isstr(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before adpmedian_filter is made visible.
function adpmedian_filter_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to adpmedian_filter (see VARARGIN)
img = imread('lena.bmp');
axes(handles.axes1);
imshow(img);
g = imnoise(img,'gaussian',0.01,0.005);
axes(handles.axes2);
imshow(g);
f = adpmedian(g,7);
axes(handles.axes3);
imshow(f);
set(handles.m_edit,'string',0.01);
set(handles.v_edit,'string',0.005);
set(handles.smax_edit,'string',7);
% Choose default command line output for adpmedian_filter
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes adpmedian_filter wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = adpmedian_filter_OutputFcn(hObject, eventdata, handles)
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes during object creation, after setting all properties.
function image_pop_menu_CreateFcn(hObject, eventdata, handles)
% hObject    handle to image_pop_menu (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end


% --- Executes on selection change in image_pop_menu.
function image_pop_menu_Callback(hObject, eventdata, handles)
% hObject    handle to image_pop_menu (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
m = str2num(get(handles.m_edit,'string'));
v = str2num(get(handles.v_edit,'string'));
smax = str2num(get(handles.smax_edit,'string'));
val = get(hObject,'value');
str = get(hObject,'string');
val1 = get(handles.noise_pop_menu,'value');
str1 = get(handles.noise_pop_menu,'string');
switch str{val}
    case 'Lena'
        lena = [];
        lena = imread('lena.bmp');
        img = lena;
    case 'Cameraman'
        cameraman = [];
        cameraman = imread('cameraman.tif');
        img = cameraman;
    case 'Peppers'
        peppers = [];
        peppers = imread('peppers.bmp');
        img = peppers;
    case 'Fingerprint'
        fingerprint = [];
       fingerprint = imread('fingerprint.jpg');
        img = fingerprint;
    case 'Licenceplate'
        licenceplate = [];
        licenceplate = imread('licenceplate.jpg');
        img = licenceplate;
    case 'Haze'
        haze = [];
        haze = imread('haze.jpg');
        img = haze;
   case 'Cloudy'
        cloudy = [];
        cloudy = imread('cloudy.tif');
        img = cloudy;
end
axes(handles.axes1);
imshow(img);
switch str1{val1}
    case '高斯噪声'
        set(handles.m_edit,'enable','on');
        set(handles.v_edit,'enable','on');
        g = imnoise(img,'gaussian',m,v);
    case '椒盐噪声'
        set(handles.m_edit,'enable','on');
        g = imnoise(img,'salt & pepper',m);
        set(handles.v_edit,'enable','off');
    case '乘性噪声'
        set(handles.v_edit,'enable','on');
        g = imnoise(img,'speckle',v);
        set(handles.m_edit,'enable','off');
    case '泊松噪声'
        g = imnoise(img,'poisson');
        set(handles.m_edit,'enable','off');
        set(handles.v_edit,'enable','off');
end
axes(handles.axes2);
imshow(g);
f = adpmedian(g,smax);
axes(handles.axes3);
imshow(f);
% Hints: contents = get(hObject,'String') returns image_pop_menu contents as cell array
%        contents{get(hObject,'Value')} returns selected item from image_pop_menu


% --- Executes during object creation, after setting all properties.
function noise_pop_menu_CreateFcn(hObject, eventdata, handles)
% hObject    handle to noise_pop_menu (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    empty - handles not created until after all CreateFcns called

% Hint: popupmenu controls usually have a white background on Windows.
%       See ISPC and COMPUTER.
if ispc
    set(hObject,'BackgroundColor','white');
else
    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));
end

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185

四、运行结果

在这里插入图片描述

五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/116199530

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。