【缺陷检测】基于matlab形态学液晶显示器表面缺陷检测【含Matlab源码 1304期】

举报
海神之光 发表于 2022/05/29 02:40:21 2022/05/29
【摘要】 一、形态学检测简介 1 图像分析及预处理 拍摄图像会产生随机的扰动,图像有一定的噪声,为消除掉图像中的无关信息,对图像进行预处理。 1.1 灰度化 为降低运算量,需要将拍摄的三通道的RGB图像转化为单...

一、形态学检测简介

1 图像分析及预处理
拍摄图像会产生随机的扰动,图像有一定的噪声,为消除掉图像中的无关信息,对图像进行预处理。

1.1 灰度化
为降低运算量,需要将拍摄的三通道的RGB图像转化为单通道的灰度图像。采用加权平均法的灰度化方法,其中心理学灰度公式根据人眼对RGB三色的敏感程度选择不同的权重:
在这里插入图片描述
式(1)中,R、G、B分别为RGB三通道灰度值,灰度化结果如图1 (a)所示。

1.2 平滑处理
为了尽可能避免将背景当作缺陷,需要对图像进行平滑处理,这样虽然会使缺陷的边界模糊,但是有利于减少背景的干扰。注意所采用的去噪处理为均值滤波,均值滤波公式为:
在这里插入图片描述
式(2)中,m、n分别为所选择的滤波核的长和宽,Sxy是以(x,y)为中心的滤波核对应像素的位置集合,平滑处理结果如图1 (b)所示。均值滤波的缺点是会使一些细节如边缘等信息丢失,因此在找到种子点后,对没有经过平滑处理的图像进行区域生长,找到缺陷边界。

2 算法原理
2.1 阈值分割

阈值分割是图像分割中最简单、基础的方法,性能比较稳定,计算量较小,运算速度快;它主要有全局阈值分割、局部阈值分割、自适应阈值分割等方法。阈值算法基于阈值T,将像素灰度值大于阈值T和小于阈值T的部分分别叫做前景和背景。变换函数表达式:
在这里插入图片描述
图1 均值滤波处理
在这里插入图片描述
式(3)中,T为阈值,g (x,y)为原图像像素点(x,y)的灰度值,f (x,y)为分割后图像像素点(x,y)的灰度值,阈值分割结果如图2所示。
在这里插入图片描述
图2 阈值分割结果

2.2 形态学开运算降噪
数学形态学简称形态学,其处理方式为领域运算,即把领域结构元素与图像对应位置像素进行逻辑运算,这种运算的影响因素主要有结构元素大小、形状和逻辑运算的规则。形态学操作主要有膨胀、腐蚀、梯度运算、礼帽运算、黑帽运算、开运算和闭运算等,但其基础为腐蚀和膨胀,利用膨胀和腐蚀就能完成不同形式的运算。

腐蚀运算能消除轮廓边界点,使边界向内缩小,主要用于细化二值图像目标轮廓、去除噪声等。
在这里插入图片描述
式(4)中,A为原图像,B为结构元素。首先给结构元素B定义一个原点,当结构元素B的原点移动到图像A的(x,y)上时,如果结构元素B上等于1的像素点对应图像A也等于1,则将图像A的(x,y)的灰度值置为1,否则置为0,腐蚀示意图如图3所示。
在这里插入图片描述
图3 腐蚀示意图
膨胀运算则与腐蚀运算相反,使边界向外扩张,主要用于填补图像分割后的空白,使相近的不相连的轮廓相连。其公式为:
在这里插入图片描述
式(5)中,A为原图像,B为结构元素。首先给结构元素B定义一个原点,当结构元素B的原点移动到图像A的(x,y)上时,如果结构元素B上等于1的像素点对应图像A中至少有一个等于1,则将图像A的(x,y)的灰度值置为1,否则置为0。

先进行腐蚀操作,然后在腐蚀的基础上进行膨胀操作,主要用于去噪和计数等。其公式为:
在这里插入图片描述
式(6)中,A为原图像,B、C为结构元素。开运算效果如图4所示,图5为开运算处理的结果。
在这里插入图片描述
图4 开运算效果
2.3 区域生长法
区域生长的思想就是把领域(四领域、八领域等)相同的化为一个区域。首先需要一个种子点作为生长的开始,然后将种子点领域内满足相似准则要求的像素点合并到种子的区域,将这个区域的像素做为种子点,继续进行生长,直到没有符合要求的点,生长结束,所有种子点像素作为生长的区域。分割的好坏由初始种子点和相似准则决定。
在这里插入图片描述
图5 形态学开运算结果
2.3.1 种子点选择与检测
经过阈值分割和形态学处理后,将二值图像各轮廓中心作为待定种子点。如果选择的种子点位于缺陷的绝对区域,那么种子点总有一个方向各像素的深度值呈现高-低-高的形态。设计检测模板如图6所示,计算出种子点在0°、45°、90°、135°方向上的深度变化,判断其变化是否呈高低高形态。
在这里插入图片描述
图6 检测模板
种子点左右两侧r个像素的灰度平均值分别为:
在这里插入图片描述
各方向的灰度变化为:
在这里插入图片描述
深度形Si态变化判定:
在这里插入图片描述
式(10)中,I (u)为检测模板中第u个像素的灰度值,w=1,2,3,4,分别代表0°,45°,90°,135°方向,mwm为w方向两侧的最小灰度值,T1为形态变化阈值。如果种子点不满足深度形态变化判定,则去除该待定种子点。

2.3.2 生长过程
区域生长的具体流程如下:
(1)将种子点坐标放入种子点集seeds。
(2)顶出种子点集中的一个种子点,对种子点八邻域的像素点进行相似准则判断;满足相似准则条件的点,视为种子点放入种子点集seeds。
(3)将顶出的种子点存入种子集S。
(4)如果种子点集内没有元素,则跳到步骤(4);如果种子点集中还有元素,则跳到步骤(2)。
(5)生成一张和输入图像长宽一致,像素值全为0的图像I。
(6)将图像I中对应种子集S坐标的像素值置为255,得到分割图像I’。
其中生长的相似准则为:
在这里插入图片描述
式(11)中,gray (seed)为当轮种子点的灰度值,gray (8_n)为其八邻域各点的像素值,Thresh为设置的阈值。区域生长结果如图7所示。
在这里插入图片描述
图7 区域生长结果
3 实验过程
图像分割就是按照预先设定的规则,将图像分割为有意义的前景和背景的过程。区域生长是一个分割效果比较好的算法,但前提是需要找到适合的种子点。单一的分割算法就容易遇到这种不足的情况,结合使用形态学和阈值分割的方法来找到合适的种子点,帮助区域生长算法完成分割任务,达到满足要求的分割效果,分割方法流程如图8所示。
在这里插入图片描述
图8 分割流程图
首先对输入的图片进行灰度化处理,变成单通道的灰度图片,然后滤波去除噪声,使图像更平滑,选择合适的阈值进行阈值分割,在利用开运算去除掉分割后较小的前景,以各前景区域的中心点为起始种子点,进行区域生长,得到最终所满足要求的前景。

二、部分源代码

% 
clear all,close all;
I = imread('mixed1.jpg');
I = rgb2gray(I);
[M,N]=size(I);
figure(1);subplot(131),imshow(I);title('原灰度图像');
medfilt_I=midfilt(I,3);%进行模板为3×3的中值滤波
subplot(132),imshow(medfilt_I);title('中值滤波后图像');
P=adapthisteq(medfilt_I,'Numtiles',[4 4]);%对比度增强
P1=imadjust(P);%亮度调整
P2=midfilt(P1,3);%再次对处理后的图像进行中值滤波,平滑处理
subplot(133),imshow(P2);title('增强对比度和亮度后的图像');

H=im2double(P2);%转换为double类型
g_gradient=SobelFilter(H); %求梯度值
figure(2),subplot(221);imshow(g_gradient);title('梯度值');
th=0.997;% 梯度阈值
g_T=zeros(M,N);%初始化零矩阵
g_T=uint8(g_T);%转换uint8数据类型
ind=find(g_gradient>th);%把梯度值大于阈值的像素点位置记录下来
g_T(ind)=256;%把这些点的灰度级设为256,最高灰度级
subplot(222);imshow(g_T);title({'根据梯度值提取出的目标轮廓';'(图片四周也有梯度较大的区域)'});
lap = uint8(zeros(M,N));%初始化一张同样大小的黑色图像
for i=2:M-1
    for j=2:N-1
        lap(i,j) = g_T(i,j);%将g_T除了图片四周,其他的值赋给lap
    end
end
subplot(223),imshow(lap);title('缺陷目标轮廓');
se90=strel('line',3,90);
se0=strel('line',3,0); %两个线型结构元素
BW2=imdilate(lap,[se90,se0]);%对目标轮廓lap进行膨胀
subplot(224);imshow(BW2);title('膨胀修复后的缺陷轮廓');
J = imfill(BW2,'holes');%对轮廓内进行填充
figure(3);subplot(121),imshow(I);title('原灰度图像');
subplot(122);imshow(J);title('提取得到缺陷二值图像')%得到了目标的二值图像

[L,m]= bwlabel(J,8);%在J中找到8连通对象的标签,返回标签矩阵L和连通对象的数量m
status = regionprops(L,'all');%测量缺陷区域的各项区域特征属性
if (max(lap(:))) %只要能提取到边缘值不全为0,则说明有缺陷
point_defect_number=0; %对缺陷数量进行初始化
line_defect_number=0;
block_defect_number=0;
point_area_max=200; %规定点缺陷区域的最大面积为200
line_area_max=3000; %规定线缺陷区域的最大面积为3000
   for i=1:m
         if (status(i).Area <point_area_max) %判断是否满足点缺陷的条件
             point_defect_number =point_defect_number+1;
             rectangle('position' ,status(i).BoundingBox,'Curvature',[1,1],'edgecolor','r');
         else  %判断是否满足线缺陷的条件
             if(status(i).Area<line_area_max&&(status(i).MajorAxisLength/ status(i).MinorAxisLength > 20))
             line_defect_number =line_defect_number+1;
              rectangle('position' ,status(i).BoundingBox,'Curvature',[1,1],'edgecolor','g');
             else  %面缺陷
                 block_defect_number=block_defect_number+1;
                 rectangle('position' ,status(i).BoundingBox,'Curvature',[1,1],'edgecolor','b');
             end
         end
    
    end
    hold off;
    fprintf('检测结果:\n点缺陷数目 : %d\n',point_defect_number);
    fprintf('线缺陷数目 : %d\n',line_defect_number);
    fprintf('面缺陷数目 : %d\n',block_defect_number);
 else
  fprintf('检测结果:\n没有缺陷\n');
end
% 
function g=SobelFilter(f)
len=1;%填充的行数和列数为len=1
%对原始图像进行扩展,此处采用了镜像扩展,目的是解决边缘计算的问题
f_pad=padarray(f,[len,len]);%对图像四周进行11列的扩展,用0来填充
[M,N]=size(f_pad);
%sobel算子
Lx=[-1 -2 -1;  %x方向上的算子模板
    0 0 0;
    1 2 1];
Ly=[-1 0 1;%y方向上的模板
     -2 0 2;
     -1 0 1];     


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/120167169

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。