【优化算法】正弦余弦算法(SCA)【含Matlab源码 1308期】

举报
海神之光 发表于 2022/05/29 02:34:14 2022/05/29
【摘要】 一、获取代码方式 获取代码方式1: 完整代码已上传我的资源:【优化算法】正弦余弦算法(SCA)【含Matlab源码 1308期】 获取代码方式2: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,...

一、获取代码方式

获取代码方式1:
完整代码已上传我的资源:【优化算法】正弦余弦算法(SCA)【含Matlab源码 1308期】

获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);

二、正弦余弦算法简介

正弦余弦算法(Sine Cosine Algorithm, SCA)是一种新的群体智能优化算法,具有参数少、结构简单以及易实现等特点,因此,利用正弦和余弦函数的波动性和周期性进行迭代寻优。假设种群规模为M,即包含M个个体,每个个体的维度为D,那么,个体i在第j维的空间位置表示为Xij,i∈{1,2,…,M},j∈{1,2,…,D}。首先,在解空间内随机产生M个个体的初始位置,对应种群规模的大小。然后,计算每个个体的适应度值,并记录当前最优个体位置。最后,循环至满足终止条件,输出最优解。在每次迭代中,个体位置的更新表达式为
在这里插入图片描述
其中:Xij(t)为个体i在第t次迭代时的位置在第j维的分量;Pj(t)为第t次迭代种群当前最优个体在第j维的分量;r2∈[0,2π]、r3∈[0,2]和r4∈[0,1]为3个随机参数;r1为控制参数,随着迭代次数的增加从a递减到0,可表示为
在这里插入图片描述
其中:a为常数;t为当前的迭代次数;T为最大迭代次数。

三、部分源代码


clear all 
clc

SearchAgents_no=30; % Number of search agents

Function_name='F1'; % Name of the test function that can be from F1 to F23 (Table 1,2,3 in the paper)

Max_iteration=1000; % Maximum numbef of iterations

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);

[Best_score,Best_pos,cg_curve]=SCA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj);

figure('Position',[284   214   660   290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Test function')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
grid off

%Draw objective space
subplot(1,2,2);
semilogy(cg_curve,'Color','b')
title('Convergence curve')
xlabel('Iteration');
ylabel('Best flame (score) obtained so far');

axis tight
grid off
box on
legend('SCA')

display(['The best solution obtained by SCA is : ', num2str(Best_pos)]);
display(['The best optimal value of the objective funciton found by SCA is : ', num2str(Best_score)]);

 

function [Destination_fitness,Destination_position,Convergence_curve]=SCA(N,Max_iteration,lb,ub,dim,fobj)

display('SCA is optimizing your problem');

%Initialize the set of random solutions
X=initialization(N,dim,ub,lb);

Destination_position=zeros(1,dim);
Destination_fitness=inf;

Convergence_curve=zeros(1,Max_iteration);
Objective_values = zeros(1,size(X,1));

% Calculate the fitness of the first set and find the best one
for i=1:size(X,1)
    Objective_values(1,i)=fobj(X(i,:));
    if i==1
        Destination_position=X(i,:);
        Destination_fitness=Objective_values(1,i);
    elseif Objective_values(1,i)<Destination_fitness
        Destination_position=X(i,:);
        Destination_fitness=Objective_values(1,i);
    end
    
    All_objective_values(1,i)=Objective_values(1,i);
end

%Main loop
t=2; % start from the second iteration since the first iteration was dedicated to calculating the fitness
while t<=Max_iteration
    
    % Eq. (3.4)
    a = 2;
    Max_iteration = Max_iteration;
    r1=a-t*((a)/Max_iteration); % r1 decreases linearly from a to 0
    
    % Update the position of solutions with respect to destination
    for i=1:size(X,1) % in i-th solution
        for j=1:size(X,2) % in j-th dimension
            
            % Update r2, r3, and r4 for Eq. (3.3)
            r2=(2*pi)*rand();
            r3=2*rand;
            r4=rand();
            
            % Eq. (3.3)
            if r4<0.5
                % Eq. (3.1)
                X(i,j)= X(i,j)+(r1*sin(r2)*abs(r3*Destination_position(j)-X(i,j)));
            else
                % Eq. (3.2)
                X(i,j)= X(i,j)+(r1*cos(r2)*abs(r3*Destination_position(j)-X(i,j)));
            end
            
        end
    end
           

function func_plot(func_name)

[lb,ub,dim,fobj]=Get_Functions_details(func_name);

switch func_name 
    case 'F1' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F2' 
        x=-100:2:100; y=x; %[-10,10]
        
    case 'F3' 
        x=-100:2:100; y=x; %[-100,100]
        
    case 'F4' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F5' 
        x=-200:2:200; y=x; %[-5,5]
    case 'F6' 
        x=-100:2:100; y=x; %[-100,100]
    case 'F7' 
        x=-1:0.03:1;  y=x;  %[-1,1]
    case 'F8' 
        x=-500:10:500;y=x; %[-500,500]
    case 'F9' 
        x=-5:0.1:5;   y=x; %[-5,5]    
    case 'F10' 
        x=-20:0.5:20; y=x;%[-500,500]
    case 'F11' 
        x=-500:10:500; y=x;%[-0.5,0.5]
    case 'F12' 
        x=-10:0.1:10; y=x;%[-pi,pi]
    case 'F13' 
        x=-5:0.08:5; y=x;%[-3,1]
    case 'F14' 
        x=-100:2:100; y=x;%[-100,100]
    case 'F15' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F16' 
        x=-1:0.01:1; y=x;%[-5,5]
    case 'F17' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F18' 
        x=-5:0.06:5; y=x;%[-5,5]
    case 'F19' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F20' 
        x=-5:0.1:5; y=x;%[-5,5]        
    case 'F21' 
        x=-5:0.1:5; y=x;%[-5,5]
    case 'F22' 
        x=-5:0.1:5; y=x;%[-5,5]     
    case 'F23' 
        x=-5:0.1:5; y=x;%[-5,5]  
end    

    

L=length(x);
f=[];

for i=1:L
    for j=1:L
        if strcmp(func_name,'F15')==0 && strcmp(func_name,'F19')==0 && strcmp(func_name,'F20')==0 && strcmp(func_name,'F21')==0 && strcmp(func_name,'F22')==0 && strcmp(func_name,'F23')==0
            f(i,j)=fobj([x(i),y(j)]);
        end
        if strcmp(func_name,'F15')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end
        if strcmp(func_name,'F19')==1
            f(i,j)=fobj([x(i),y(j),0]);
        end
        if strcmp(func_name,'F20')==1
            f(i,j)=fobj([x(i),y(j),0,0,0,0]);
        end       
        if strcmp(func_name,'F21')==1 || strcmp(func_name,'F22')==1 ||strcmp(func_name,'F23')==1
            f(i,j)=fobj([x(i),y(j),0,0]);
        end          
    end
end




  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183

四、运行结果

在这里插入图片描述

五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/120209221

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。