【土壤分类】基于matlab GUI多类SVM土壤分类【含Matlab源码 1398期】
【摘要】
一、SVM简介
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到...
一、SVM简介
支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。
1 数学部分
1.1 二维空间
2 算法部分
二、部分源代码
% Project Title: Soil Detection & Classification
function varargout = SoilDetect_GUI(varargin)
% SOILDETECT_GUI MATLAB code for SoilDetect_GUI.fig
% SOILDETECT_GUI, by itself, creates a new SOILDETECT_GUI or raises the existing
% singleton*.
%
% H = SOILDETECT_GUI returns the handle to a new SOILDETECT_GUI or the handle to
% the existing singleton*.
%
% SOILDETECT_GUI('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in SOILDETECT_GUI.M with the given input arguments.
%
% SOILDETECT_GUI('Property','Value',...) creates a new SOILDETECT_GUI or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before SoilDetect_GUI_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to SoilDetect_GUI_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES
% Edit the above text to modify the response to help SoilDetect_GUI
% Last Modified by GUIDE v2.5 28-Aug-2021 14:31:16
% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
'gui_Singleton', gui_Singleton, ...
'gui_OpeningFcn', @SoilDetect_GUI_OpeningFcn, ...
'gui_OutputFcn', @SoilDetect_GUI_OutputFcn, ...
'gui_LayoutFcn', [] , ...
'gui_Callback', []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end
if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before SoilDetect_GUI is made visible.
function SoilDetect_GUI_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to SoilDetect_GUI (see VARARGIN)
% Choose default command line output for SoilDetect_GUI
handles.output = hObject;
handles.output = hObject;
ss = ones(300,400);
axes(handles.axes1);
imshow(ss);
axes(handles.axes2);
imshow(ss);
% Update handles structure
guidata(hObject, handles);
% UIWAIT makes SoilDetect_GUI wait for user response (see UIRESUME)
% uiwait(handles.figure1);
% --- Outputs from this function are returned to the command line.
function varargout = SoilDetect_GUI_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% Get default command line output from handles structure
varargout{1} = handles.output;
% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
clc
[filename, pathname] = uigetfile({'*.*';'*.bmp';'*.jpg';'*.gif'}, 'Pick a Soil Image');
I = imread([pathname,filename]);
I = imresize(I,[256,256]);
I2 = imresize(I,[300,400]);
axes(handles.axes1);
imshow(I2);title('Query Image');
ss = ones(300,400);
axes(handles.axes2);
imshow(ss);
handles.ImgData1 = I;
guidata(hObject,handles);
% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton2 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
I3 = handles.ImgData1;
I4 = imadjust(I3,stretchlim(I3));
I5 = imresize(I4,[300,400]);
axes(handles.axes2);
imshow(I5);title(' Contrast Enhanced ');
handles.ImgData2 = I4;
%% Feature Extraction Part
% queryimage = I4;
%queryImage = imresize(queryImage, [256 256]);
hsvHist = hsvHistogram(I4);
autoCorrelogram = colorAutoCorrelogram(I4);
color_moments = colorMoments(I4);
% for gabor filters we need gary scale image
img = double(rgb2gray(I4))/255;
[meanAmplitude, msEnergy] = gaborWavelet(img, 4, 6); % 4 = number of scales, 6 = number of orientations
wavelet_moments = waveletTransform(I4);
% construct the queryImage feature vector
Feature_Vector = [hsvHist autoCorrelogram color_moments meanAmplitude msEnergy wavelet_moments];
whos Feature_Vector
F1 = mean2(hsvHist(:));
F2 = mean2(autoCorrelogram(:));
F3 = mean2(color_moments(:));
F4 = mean2(meanAmplitude(:));
F5 = mean2(msEnergy(:));
F6 = mean2(wavelet_moments(:));
set(handles.edit3,'string',F1);
set(handles.edit4,'string',F2);
set(handles.edit5,'string',F3);
set(handles.edit6,'string',F4);
set(handles.edit7,'string',F5);
set(handles.edit8,'string',F6);
handles.ImgData3 = Feature_Vector;
guidata(hObject,handles);
%%
% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton3 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
load('TrainFeat_Soil.mat')
test = handles.ImgData3;
result = multisvm(TrainFeat,Train_Label,test);
disp(result);
if result == 1
A1 = 'Clay';
set(handles.edit1,'string',A1);
helpdlg(' Clay ');
disp(' Clay ');
elseif result == 2
A2 = 'Clayey Peat';
set(handles.edit1,'string',A2);
helpdlg(' Clayey Peat ');
disp('Clayey Peat');
elseif result == 3
A3 = 'Clayey Sand';
set(handles.edit1,'string',A3);
helpdlg(' Clayey Sand ');
disp(' Clayey Sand ');
elseif result == 4
A4 = 'Humus Clay';
set(handles.edit1,'string',A4);
helpdlg(' Humus Clay ');
disp(' Humus Clay ');
elseif result == 5
A5 = 'Peat';
set(handles.edit1,'string',A5);
helpdlg(' Peat ');
disp(' Peat ');
elseif result == 6
A6 = 'Sandy Clay';
set(handles.edit1,'string',A6);
helpdlg(' Sandy Clay ');
disp('Sandy Clay');
elseif result == 7
A7 = 'Silty Sand';
set(handles.edit1,'string',A7);
helpdlg(' Silty Sand ');
disp(' Silty Sand ');
end
guidata(hObject,handles);
% --- Executes on button press in pushbutton4.
function pushbutton4_Callback(hObject, eventdata, handles)
% hObject handle to pushbutton4 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
load('Accuracy_Data.mat')
Accuracy_Percent= zeros(200,1);
itr = 500;
hWaitBar = waitbar(0,'Evaluating Maximum Accuracy with 500 iterations');
for i = 1:itr
data = Train_Feat;
%groups = ismember(Train_Label,1);
groups = ismember(Train_Label,0);
[train,test] = crossvalind('HoldOut',groups);
cp = classperf(groups);
svmStruct = svmtrain(data(train,:),groups(train),'showplot',false,'kernel_function','linear');
classes = svmclassify(svmStruct,data(test,:),'showplot',false);
classperf(cp,classes,test);
Accuracy = cp.CorrectRate;
Accuracy_Percent(i) = Accuracy.*100;
sprintf('Accuracy of Linear Kernel is: %g%%',Accuracy_Percent(i))
waitbar(i/itr);
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169
- 170
- 171
- 172
- 173
- 174
- 175
- 176
- 177
- 178
- 179
- 180
- 181
- 182
- 183
- 184
- 185
- 186
- 187
- 188
- 189
- 190
- 191
- 192
- 193
- 194
- 195
- 196
- 197
- 198
- 199
- 200
- 201
- 202
- 203
- 204
- 205
- 206
- 207
- 208
- 209
- 210
- 211
- 212
- 213
- 214
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/120800517
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)