【BP数据预测】基于matlab粒子群算法优化BP神经网络数据预测(多输入多输出)【含Matlab源码 1418期】

举报
海神之光 发表于 2022/05/29 02:44:58 2022/05/29
【摘要】 一、粒子群算法及BP神经网络简介 由于BP神经网络在应用过程中初始权值和阈值随机选取,容易出现局部收敛极小点,从而降低拟合效果,为了解决这个问题,采用PSO优化BP神经网络(PSO-BP)算法的初始权值...

一、粒子群算法及BP神经网络简介

由于BP神经网络在应用过程中初始权值和阈值随机选取,容易出现局部收敛极小点,从而降低拟合效果,为了解决这个问题,采用PSO优化BP神经网络(PSO-BP)算法的初始权值和阈值,解决局部极小点问题,提高BP神经网络算法的预测精度。在PSO中,整个搜索空间的维数D。第i个粒子的位置见式(3)。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
图2 PSO-BP的算法流程

二、部分源代码

%粒子群优化多输入多输出BP神经网络代码
clear
clc
tic
global SamIn SamOut HiddenUnitNum InDim OutDim TrainSamNum
%% 导入训练数据
data = xlsread('data.xlsx');
[data_m,data_n] = size(data);%获取数据维度

P = 80;  %百分之P的数据用于训练,其余测试
Ind = floor(P * data_m / 100);

train_data = data(1:Ind,1:4)';
train_result = data(1:Ind,6:7)';

%% 初始化参数
[InDim,TrainSamNum] = size(train_data);% 学习样本数量
[OutDim,TrainSamNum] = size(train_result);
HiddenUnitNum = 8;                     % 隐含层神经元个数

[SamIn,PS_i] = mapminmax(train_data,0,1);    % 原始样本对(输入和输出)初始化
[SamOut,PS_o] = mapminmax(train_result,0,1);

W1 = HiddenUnitNum*InDim;      % 初始化输入层与隐含层之间的权值
B1 = HiddenUnitNum;          % 初始化输入层与隐含层之间的阈值
W2 = OutDim*HiddenUnitNum;     % 初始化输出层与隐含层之间的权值
B2 = OutDim;                % 初始化输出层与隐含层之间的阈值
L = W1+B1+W2+B2;        %粒子维度

%% *********初始化
M=100;  %种群规模
%初始化粒子位置
X=rand(M,L);
c1=2;  %学习因子
c2=2;
wmax=0.9;%最大最小惯性权重

v=zeros(M,L);%初始化速度
%*******全局最优粒子位置初始化
fmin=inf;
for i=1:M
  
    if fx<fmin
        fmin=fx;
        gb=X(i,:);
    end
end
%********粒子个体历史最优位置初始化
pb=X; 
%********算法迭代
for t=1:Tmax
    w(t)=wmax-(wmax-wmin)*t/Tmax;  %线性下降惯性权重
    for i=1:M
       %******更新粒子速度
       v(i,:)=w(t)*v(i,:)+c1*rand(1)*(pb(i,:)-X(i,:))+c2*rand(1)*(gb-X(i,:));
       if sum(abs(v(i,:)))>1e3
           v(i,:)=rand(size(v(i,:)));
       end
       %*******更新粒子位置
       X(i,:)=X(i,:)+v(i,:);
    end
    %更新pbest和gbest
    for i=1:M
    
        end
        if f(X(i,:))<f(gb)
            gb=X(i,:);
        end
    end
    %保存最佳适应度
    re(t)=f(gb);
    fprintf('经%d次训练,误差为%f,用时%fs\n\n',t,f(gb),toc);
    %可视化迭代过程
    subplot(221)
    plot(gb)
    title('权阈值更新曲线')
    hold on
    subplot(222)
    mesh(v)

    plot(re,'r')
    title('累计误差迭代曲线')
    img =gcf;  %获取当前画图的句柄
print(img, '-dpng', '-r600', './img4.png')         %即可得到对应格式和期望dpi的图像
    %74-86会增加程序运行时间,注释掉可加快程序运行
end
x = gb;
W1 = x(1:HiddenUnitNum*InDim);

W1 = reshape(W1,[HiddenUnitNum, InDim]);
B1 = x(L1+1:L1+HiddenUnitNum)';
L2 = L1 + length(B1);
W2 = x(L2+1:L2+OutDim*HiddenUnitNum);
L3 = L2 + length(W2);
W2 = reshape(W2,[OutDim, HiddenUnitNum]);
B2 = x(L3+1:L3+OutDim)';


%% 绘制结果
figure
plot(re,'r')
xlabel('迭代次数')
ylabel('适应度')
title('累计误差迭代曲线')
img =gcf;  %获取当前画图的句柄
print(img, '-dpng', '-r600', './img1.png')         %即可得到对应格式和期望dpi的图像
figure
subplot(2,2,1);
plot(train_result(1,:), 'r-*')
hold on
plot(Forcast_data(1,:), 'b-o');
legend('真实值','拟合值')
title('第1个输出训练集拟合效果')
subplot(2,2,2);
plot(test_result(1,:), 'r-*')
hold on
plot(Forcast_data_test(1,:), 'b-o');
legend('真实值','预测值')
title('第1个输出测试集预测效果')
subplot(2,2,3);
stem(train_result(1,:) - Forcast_data(1,:))
title('第1个输出训练集误差')
subplot(2,2,4);
stem(test_result(1,:) - Forcast_data_test(1,:))
title('第1个输出测试集误差')
img =gcf;  %获取当前画图的句柄
print(img, '-dpng', '-r600', './img2.png')         %即可得到对应格式和期望dpi的图像
figure
subplot(2,2,1);
plot(train_result(2,:), 'r-*')
hold on
plot(Forcast_data(2,:), 'b-o');
legend('真实值','拟合值')
title('第2个输出训练集拟合效果')
subplot(2,2,2);
plot(test_result(2,:), 'r-*')
hold on
plot(Forcast_data_test(2,:), 'b-o');
legend('真实值','预测值')
title('第2个输出测试集预测效果')
subplot(2,2,3);
stem(train_result(2,:) - Forcast_data(2,:))
title('第2个输出训练集误差')
subplot(2,2,4);
stem(test_result(2,:) - Forcast_data_test(2,:))
title('第2个输出测试集误差')
img =gcf;  %获取当前画图的句柄
print(img, '-dpng', '-r600', './img3.png')         %即可得到对应格式和期望dpi的图像
toc

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149

三、运行结果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2019b

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]周品.MATLAB 神经网络设计与应用[M].清华大学出版社,2013.
[4]陈明.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.
[5]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.
[6]任圆圆.粒子群优化BP神经网络算法在公路形变预测中的应用分析[J].电子测量技术. 2020,43(12)

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/120894331

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。