【多目标优化求解】基于matlab自适应风驱动算法求解多目标优化问题【含Matlab源码 1414期】
【摘要】
一、获取代码方式
获取代码方式1: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
获取代码方式2: 完整代码已上传我的资源:【多目标求解】基于matlab自适应风驱动算法求解多目...
一、获取代码方式
获取代码方式1:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
获取代码方式2:
完整代码已上传我的资源:【多目标求解】基于matlab自适应风驱动算法求解多目标优化问题【含Matlab源码 1414期】
备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);
二、部分源代码
function MO_AWDO_v01()
%-------------------------------------------------------------------------
tic; clear; close all; clc;
format long g;
%--------------------------------------------------------------
ArchiveParetoFronts = [];
% User defined parameters:
param.popsize = 100; % population size.
param.npar = 10; % Dimension of the problem.
param.maxit = 100; % Maximum number of iterations.
maximumV = 0.5; % maximum allowed speed.
%--------------------------------------------------------------
% AWDO will select the coefficient values; alpha, RT, g, c, and Vmax:
rec.arx = rand(5,param.popsize); %consistent with the CMAES indexing
%---------------------------------------------------------------
% Initialize WDO population, position and velocity:
% Randomize population position in the range of [-1, 1]:
pos = 2*(rand(param.popsize,param.npar)-0.5);
% Randomize velocity in the range of [-Vmax, Vmax]:
vel = maximumV * 2 * (rand(param.popsize,param.npar)-0.5);
%---------------------------------------------------------------
% Evaluate initial population via multi-objective function:
for K=1:param.popsize,
% [f1,f2] = kursawe(pos(K,:));
% [f1,f2] = kita(pos(K,:));
% [f1,f2] = schaffer(pos(K,:));
% [f1,f2] = ZDT1(pos(K,:));
[f1,f2] = ZDT4(pos(K,:));
pres(K,:) = [f1,f2];
end
%----------------------------------------------------------------
%
% Call non-dominated sorting to identify the Pareto-front that each particle belongs:
posF=[pos, pres];
f = non_domination_sort_mod(posF, 2,param.npar); % f = [pos, f1, f2, rank]
% extract the rank index, i.e. which Pareto-front the particle belongs:
rank_ind = f(:,param.npar+3);
% Select the Pareto-front == 1 particles as Global Best Position:
globalposPOP = f( (f(:,param.npar+3) ==1) , 1:param.npar);
% Archieve the rank 1 particles:
ArchiveParetoFronts = [ArchiveParetoFronts; f( (f(:,param.npar+3) ==1) , 1:(param.npar+2) )];
%-----------------------------------------------------------------
% Start iterations :
iter = 1; % iteration counter
for ij = 2:param.maxit,
ij
% Update the velocity:
for i=1:param.popsize
% choose random dimensions:
a = randperm(param.npar);
% choose velocity based on random dimension:
velot(i,:) = vel(i,a);
% randomly select a globalpos from the 1st Pareto-front members
[aa, bb] = size(globalposPOP);
globalpos = globalposPOP(round(((aa-1) * rand(1,1)) + 1),:);
vel(i,:) = (1-rec.arx(1,i))*vel(i,:)-(rec.arx(2,i)*pos(i,:))+ ...
abs(1-1/rank_ind(i))*((globalpos-pos(i,:)).*rec.arx(3,i))+ ...
(rec.arx(4,i)*velot(i,:)/rank_ind(i));
end
% maxV is optimized by CMAES. Limit it maximumV defined by user
maxV = rec.arx(5,:);
maxV = min(maxV, repmat(maximumV, size(rec.arx(5,:),1), size(rec.arx(5,:),2)) );
maxV = max(maxV, repmat(-maximumV, size(rec.arx(5,:),1), size(rec.arx(5,:),2)) );
% Check velocity limits:
vel = min(vel, repmat(maxV',1,param.npar));
vel = max(vel, -repmat(maxV',1,param.npar));
% Update air parcel positions:
pos = pos + vel;
pos = min(pos, 1.0);
pos = max(pos, -1.0);
% Evaluate population: (Pressure)
for K=1:param.popsize,
% [f1,f2] = kursawe(pos(K,:));
% [f1,f2] = kita(pos(K,:));
% [f1,f2] = schaffer(pos(K,:));
% [f1,f2] = ZDT1(pos(K,:));
[f1,f2] = ZDT4(pos(K,:));
pres(K,:) = [f1,f2];
end
% Call non-dominated sorting to identify the Pareto-front that each particle belongs:
posF=[pos, pres];
f = non_domination_sort_mod(posF, 2,param.npar); % f = [pos, f1, f2, rank]
% extract the rank index, i.e. which Pareto-front the particle belongs:
rank_ind = f(:,param.npar+3);
% Select the Pareto-front == 1 particles and add them to the archieve along previous Pareto-fronts:
ArchiveParetoFronts = [ArchiveParetoFronts; f( (f(:,param.npar+3) ==1) , 1:(param.npar+2) )];
% Run the non-dominated sort among the Archieve members:
f = non_domination_sort_mod(ArchiveParetoFronts, 2,param.npar);
% Replace the archieve with only the rank=1 members:
ArchiveParetoFronts = f( (f(:,param.npar+3) ==1) , 1:(param.npar+2) );
% Use rank=1 members as global position:
globalposPOP = f( (f(:,param.npar+3) ==1) , 1:param.npar);
%--------------------------------
% call CMAES
[rec] = purecmaes_wdo(ij,rec,param.popsize,pres(:, mod(ij,2)+1));
%%% PRES has two values, pass one of the pres values at each iter
%%% alternating between two.
%----------------------------------------------------
end
%%% PLOT RESULTS:
% Call non-dominant sorting:
f = non_domination_sort_mod(ArchiveParetoFronts, 2,param.npar);
% Plot the MO-results -- debugging purposes
pres2plot = f( (f(:,param.npar+3) ==1) , param.npar+1 : param.npar+2);
plot(pres2plot(:,1), pres2plot(:,2),'ko')
xlabel('F1'); ylabel('F2')
grid on
% save('Results.mat','pres2plot')
hold on
% load the known-Pareto-front data for plotting:
z = load('paretoZDT4.dat');
[a,b]=sort(z(:,2));
z = z(b,:);
plot(z(:,1),z(:,2),'-k')
end
% end-of-WDO.
%----------------------------------------------------------------------
%----------------------------------------------------------------------
%----------------------------------------------------------------------
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
《智能优化算法及其MATLAB实例(第2版)》包子阳 余继周 杨杉著 电子工业出版社
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/120872059
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)