【图像增强】基于matlab GSA灰度图像增强【含Matlab源码 1172期】

举报
海神之光 发表于 2022/05/29 02:05:17 2022/05/29
【摘要】 一、获取代码方式 获取代码方式1: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。 获取代码方式2: 完整代码已上传我的资源:【图像增强】基于matlab GSA灰度图像增强【含M...

一、获取代码方式

获取代码方式1:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

获取代码方式2:
完整代码已上传我的资源:【图像增强】基于matlab GSA灰度图像增强【含Matlab源码 1172期】

备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);

二、图像增强及GSA简介

1 图像增强
图像增强是对图像的某些特征,如边缘、轮廓、对比度等进行强调或锐化,以便于显示、观察或进一步分析与处理。通过对图像的特定加工,将被处理的图像转化为对具体应用来说视觉质量和效果更“好”或更“有用”的图像。
图像增强是最基本最常用的图像处理技术,常用于其他图像处理的预处理阶段。
在这里插入图片描述
(1)高通平滑、低通锐化;平滑模糊、锐化突出图像细节
(2)滤波器还有带通、带阻等形式
(3)根据噪声(椒盐噪声、高斯噪声…)的不同,选用不同的滤波
(4)邻域有4-邻域、对角邻域、8-邻域,相对应的有邻接,即空间上相邻、像素灰度相似
(5)图像边缘处理:忽略不处理、补充、循环使用
(6)目前尚未图像处理大多基于灰度图像

2 引力搜索算法(GSA)
引力搜索算法(GSA)是一种基于引力和质量相互作用定律的优化算法。该算法基于牛顿引力:“宇宙中的每个粒子都以与力乘积成正比的力吸引每个其他粒子。它们的质量与它们之间的距离的平方成反比”。

三、部分源代码

% Using the Regional Similarity Transformation Function and Dragonfly Algorithm. 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%THIS IS A DEMO FOR NOVEL IMAGE ENHANCEMENT USING GRAV脻TAT脻ONAL SEARCH ALGORITHM 
clc;
clear all;
close all;

%READ IMAGE
i=imread('test5.bmp');
i=imresize(i,1);  

%--------------------------------------------------------------------------
%GLOBAL MEAN
frekans=zeros(256,1);

% It records by counting how many times each pixel value is.

for k=1:size(i,1)
    for l=1:size(i,2)

        value=i(k,l);
       frekans(value+1)=frekans(value+1)+1; 

    end
end
deger=max(frekans);
for k=1:256
    if deger==frekans(k)
        D=k;
    end
end
D=double(D/255);
image = im2double(i);
global_mean = D;
%--------------------------------------------------------------------------
% LOCAL MEAN
Bmean = mean_n(image);
%--------------------------------------------------------------------------
%SIMILARITY
[S]=similarity(i);
B=double(S);
%--------------------------
C = std_n(image,Bmean);
im_size = size(image);
%-------------------------------------------------------------------------
%OPTIMIZATION PARAMETERS
N=15; % Agent number;
Max_iteration=15;
%-------------------------------------------------------------------------
%CALL FUNCTION 

[parameters Fbest BestChart MeanChart] = GSA_enhancement2(image,global_mean,B,C,im_size, N, Max_iteration);

enh = trans(i,image, B, C, global_mean, parameters(1),parameters(2),parameters(3),parameters(4) );

function [S]= similarity(x)


[xlen ylen] =size(x);

S=zeros(xlen, ylen);

for i=2:1:xlen-1
    for j=2:1:ylen-1
        
            %--------------------------------------------------------
        %Getting the values in the mask
        maskGray=zeros(1,9) ;
        resim=zeros(1,9) ; 
          for b=1:9;
          [m]=ikomsu(b,i);
          [n]=jkomsu(b,j);
          [res]=resimdemi(m,n,xlen,ylen);
          resim(b)=res;
                        if(resim(b)==1)
                            gray= x(m,n); 
                            maskGray (b) =gray;
                        else
                            maskGray (b) =0;
                        end
          end
  % Distance and similarity are calculated between 9 pixels in the mask and the result is determined.
       DN=150;
       sim=0;
       sum=0;
      for b=1:9
                   sim (b)=similarity1(maskGray(b),maskGray(9),DN);
                   sum=sim(b)+sum;    
      end
         %---------------------------------------------------------
     
         
          S(i,j)=sum/9;
          
              
    end
end 


end
%------------------------------------------------------------------------
%FUNCTIONS
%-----------------------------------------------------------------------
function [ res ] = resimdemi(x,y,w,h )

 if(x<1 || x>w-1 || y<1 || y>h-1)
    res=0;
 else
    res=1;


 end
end
 function [x] = ikomsu( komsuno, i)


 if(komsuno ==1)
     x=i-1;
 elseif(komsuno ==2)
    x= i;
 elseif(komsuno ==3)
    x= i+1;
 elseif(komsuno ==4)
    x= i-1;
 elseif(komsuno ==5)
    x= i+1;
 elseif(komsuno ==6)
   x= i-1;
 elseif(komsuno ==7)
   x= i;
 elseif(komsuno ==8)
   x= i+1;
 elseif(komsuno ==9)
    x=i;
 else
 x=0;
 end


 end

 function [y] = jkomsu( komsuno, j )

 if(komsuno ==1)
    y= j-1;
 elseif(komsuno ==2)
    y= j-1;
 elseif(komsuno ==3)
   y= j-1;
 elseif(komsuno ==4)
   y= j;
 elseif(komsuno ==5)
   y= j;
 elseif(komsuno ==6)
   y= j+1;
 elseif(komsuno ==7)
   y= j+1;
 elseif(komsuno ==8)
   y= j+1;
 elseif(komsuno ==9)
    y= j;
 else
   y=0;
 end


 end

 
function [sim] = similarity1( k, o, DN)

 
 a=0;b=0;c=0;
 a=abs(k-o);
%  b=(abs(l-p))^2;
%  c=(abs(m-r))^2;
%  //Distance calculation based on the Euclidean relation
 dist=a;

% %  //Calculation of similarity based on linear function
 arahes=dist/DN;
 sim=1 - arahes;
%  sim=exp(-dist/DN);


end



  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189

四、运行结果

在这里插入图片描述

五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/119280772

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。