【图像评价】基于matlab GUI图像质量评价【含Matlab源码 1373期】

举报
海神之光 发表于 2022/05/29 01:07:45 2022/05/29
【摘要】 一、简介 理论知识参考文献:图像印刷质量的客观评价——以报纸印刷为例 二、部分源代码 function varargout = IQA(varargin) % Begin initializati...

一、简介

理论知识参考文献:图像印刷质量的客观评价——以报纸印刷为例

二、部分源代码

function varargout = IQA(varargin)

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @IQA_OpeningFcn, ...
                   'gui_OutputFcn',  @IQA_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before IQA is made visible.
function IQA_OpeningFcn(hObject, eventdata, handles, varargin)

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

ResetButton_Callback(hObject, eventdata, handles)

% --- Outputs from this function are returned to the command line.
function varargout = IQA_OutputFcn(hObject, eventdata, handles) 

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in BrowseImage.
function BrowseImage_Callback(hObject, eventdata, handles)

ResetButton_Callback(hObject, eventdata, handles);

global image;
[filename pathname] = uigetfile({'*.jpg';'*.bmp';'*.tif';'*.png'},'File Selector');
x = strcat(pathname, filename);
image=imread(x);
axes(handles.axes1);
imshow(image);

% --- Executes on button press in AddNoise.
function AddNoise_Callback(hObject, eventdata, handles)

global image;
global addnoisyimage;
global mean;
global variance;
global AdditiveNoiseMenu;
if (strcmp(AdditiveNoiseMenu, 'Gaussian'))
    addnoisyimage = imnoise(image, 'Gaussian', mean, variance);
elseif (strcmp(AdditiveNoiseMenu, 'Poisson'))
    addnoisyimage = imnoise(image, 'Poisson');
    elseif (strcmp(AdditiveNoiseMenu, 'Select Additive Noise Type'))
    addnoisyimage = image;
end
axes(handles.axes2);
imshow(addnoisyimage);

% --- Executes on button press in MultiNoise.
function MultiNoise_Callback(hObject, eventdata, handles)
global noisedensity;
global variance_multi;
global image;
global multinoisyimage;
global MultiplicativeNoiseMenu;
if (strcmp(MultiplicativeNoiseMenu, 'Salt & Pepper'))
    multinoisyimage = imnoise(image, 'salt & pepper', noisedensity);
elseif (strcmp(MultiplicativeNoiseMenu, 'Speckle'))
    multinoisyimage = imnoise(image, 'speckle', variance_multi);
elseif (strcmp(MultiplicativeNoiseMenu, 'Select Multiplicative Noise'))
    multinoisyimage = image;
end
axes(handles.axes3);
imshow(multinoisyimage);

% --- Executes on button press in CheckPSNR.
function CheckPSNR_Callback(hObject, eventdata, handles)

global addnoisyimage;
global multinoisyimage;
global image;
global s;
global u;
global justforcontrol;

if (get(hObject, 'Value') == get(hObject,'Max'))
    justforcontrol=1;
    s=psnr(addnoisyimage, image);
    u=psnr(multinoisyimage, image);
else
    justforcontrol=0;
    s='--';
    u='--';
end

% Hint: get(hObject,'Value') returns toggle state of CheckPSNR
function s = psnr(addnoisyimage, image)

if(ndims(addnoisyimage)==3)
    addnoisyimage = rgb2gray(addnoisyimage);
end

if(ndims(image)==3)
    image = rgb2gray(image);
end

addnoisyimage=double(addnoisyimage);
image=double(image);

[m,n] = size(addnoisyimage);

peak=255*255*m*n;

noise  = addnoisyimage - image;
nostotal = sum(sum(noise.*noise));

if nostotal == 0
    s = 'INF'; %% INF. clean image
else
    s = 10 * log10(peak./nostotal);
end

% --- Executes on button press in CheckSSIM.
function CheckSSIM_Callback(hObject, eventdata, handles)

global addnoisyimage;
global multinoisyimage;
global image;
global t;
global v;
global justforcontrol2;
K = [0.05 0.05];
window = ones(8);
L = 100;
Z = [0.01 0.03];
if (get(hObject, 'Value') == get(hObject,'Max'))
    justforcontrol2=1;
    t=ssim(addnoisyimage, image, Z, window, L);
    v=ssim(multinoisyimage, image, Z, window, L);
else
    justforcontrol2=0;
    t='--';
    v='--';
end

% Hint: get(hObject,'Value') returns toggle state of CheckSSIM
function [mssim] = ssim(img1, img2, Z, window, L)

if(ndims(img1)==3)
    img1=rgb2gray(img1);
end
if(ndims(img2)==3)
    img2=rgb2gray(img2);
end

[rows,cols]=size(img2);
img1=imresize(img1,[rows cols]);

if (nargin < 2 || nargin > 5)
   mssim = -Inf;
   ssim_map = -Inf;
   return;
end

if (size(img1) ~= size(img2))
   mssim = -Inf;
   ssim_map = -Inf;
   return;
end

[M N] = size(img1);

if (nargin == 2)
   if ((M < 11) || (N < 11))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);	%
   Z(1) = 0.01;					% default settings
   Z(2) = 0.03;			
   L = 255;                          
end

if (nargin == 3)
   if ((M < 11) || (N < 11))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);
   L = 255;
   if (length(Z) == 2)
      if (Z(1) < 0 || Z(2) < 0)
		   mssim = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   mssim = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

  
 

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/120635552

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。