【优化算法】学生心理学优化算法(SPBO)【含Matlab源码 1430期】

举报
海神之光 发表于 2022/05/29 00:15:19 2022/05/29
【摘要】 一、获取代码方式 获取代码方式1: 通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。 获取代码方式2: 完整代码已上传我的资源:【优化算法】学生心理学优化算法(SPBO)【含Matl...

一、获取代码方式

获取代码方式1:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

获取代码方式2:
完整代码已上传我的资源:【优化算法】学生心理学优化算法(SPBO)【含Matlab源码 1430期】

备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);

二、部分源代码


%  Student psychology based optimization (SPBO)algorithm 
%
%                                            
%                                                                                                                                                             
%                                                                                                     
%  Main paper:                                                                                        
%  Bikash Das, V Mukherjee, Debapriya Das, Student psychology based optimization algorithm: A new population based
%   optimization algorithm for solving optimization problems, Advances in Engineering Software, 146 (2020) 102804.
%_______________________________________________________________________________________________
% You can simply define your objective function in a seperate file and load its handle to fobj 
% The initial parameters that you need are:
%__________________________________________
% fobj = @Objective function
% variable = number of your variables
% Max_iteration = maximum number of iterations
% student = number of search agents
% mini=[mini1,mini2,...,minin] where mini is the lower bound of variable n
% maxi=[maxi1,maxi2,...,maxin] where maxi is the upper bound of variable n
% If all the variables have equal lower bound you can just
% define mini and maxi as two single numbers

% To run SPBO: [Best_fitness,Best_student,Convergence_curve]=SPBO(student,Max_iteration,mini,maxi,variable,fobj)
%______________________________________________________________________________________________





clear all 
clc

student=20; % Number of student (population)

Function_name='F5'; % Name of the test function that can be from F1 to F23 

Max_iteration=1000; % Maximum number of iterations

% Load details of the selected benchmark function
[mini,maxi,variable,fobj]=Functions(Function_name);

%Solution obtained using SPBO
[Best_fitness,Best_student,Convergence_curve]=SPBO(student,Max_iteration,maxi,mini,variable,fobj);

% Converging Curve
figure (1)
plot (Convergence_curve);
title('Convergence curve')
xlabel('Iteration');
ylabel('Fitness of best student so far');

display(['The best solution obtained by SPBO is : ', num2str(Best_student)]);
display(['The best optimal value of the objective funciton found by SPBO is : ', num2str(Best_fitness)]);



%  Student psychology based optimization (SPBO)algorithm 
%
%  Source codes demo version 1.0                                                                      
%                                                                                                     
%  Developed in MATLAB R2017b                                                                  
%                                                                                                     
%  Author and programmer: Bikash Das, V. Mukherjee, D. Das                                                         
%                                                                                                     
%         e-Mail: bcazdas@gmail.com, vivek_agamani@yahoo.com, ddas@ee.iitkgp.ernet.in                                               
%                                                                                                                                                             
%                                                                                                     
%  Main paper:                                                                                        
%  Bikash Das, V Mukherjee, Debapriya Das, Student psychology based optimization algorithm: A new population based
%   optimization algorithm for solving optimization problems, Advances in Engineering Software, 146 (2020) 102804.
%_______________________________________________________________________________________________
% You can simply define your objective function in a seperate file and load its handle to fobj 
% The initial parameters that you need are:
%__________________________________________
% fobj = @Objective function
% variable = number of your variables
% Max_iteration = maximum number of iterations
% student = number of search agents
% mini=[mini1,mini2,...,minin] where mini is the lower bound of variable n
% maxi=[maxi1,maxi2,...,maxin] where maxi is the upper bound of variable n
% If all the variables have equal lower bound you can just
% define mini and maxi as two single numbers

% To run SPBO: [Best_fitness,Best_student,Convergence_curve]=SPBO(student,Max_iteration,mini,maxi,variable,fobj)
%______________________________________________________________________________________________




function [mini,maxi,variable,fobj] = Functions(F)


switch F
    case 'F1'
        fobj = @F1;
        mini=-5.12;
        maxi=5.12;
        variable=10;
        
    case 'F2'
        fobj = @F2;
        mini=-10;
        maxi=10;
        variable=10;
        
    case 'F3'
        fobj = @F3;
        mini=-100;
        maxi=100;
        variable=10;
        
    case 'F4'
        fobj = @F4;
        mini=-5.12;
        maxi=5.12;
        variable=10;
        
    case 'F5'
        fobj = @F5;
        mini=-1.28;
        maxi=1.28;
        variable=10;
        
              
end

end

% Step
% F1

function o = F1(x)
o=sum(((x+.5)).^2);
end

% Sum Square
% F2

function o = F2(x)
variable=size(x,2);
o=sum([1:variable].*(x.^2));
end

%   Sphere
% F3

function o = F3(x)
o=sum((x).^2);
end

% Rastrigin
% F4

function o = F4(x)
variable=size(x,2);
o=sum(x.^2-10*cos(2*pi.*x))+10*variable;
end

% Quartic
% F5

function o = F5(x)
variable=size(x,2);
o=sum([1:variable].*(x.^4));
end



  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/120915033

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。