【ORELM回归预测】基于matlab离群鲁棒极限学习机ORELM回归预测【含Matlab源码 1441期】
        【摘要】 
                    
                        
                    
                    一、ORELM简介 
理论知识参考:基于MRMR的ORELM的短期风速预测 
二、部分源代码 
clear all;clc;
addpath(genpath('./.'));
%rng('default...
    
    
    
    一、ORELM简介
理论知识参考:基于MRMR的ORELM的短期风速预测
二、部分源代码
clear all;clc;
addpath(genpath('./.'));
%rng('default');
%%%------------------------------------------------------------------------
%%%   Load Data
%%%------------------------------------------------------------------------
%[traindata,trainlabel,testdata,testlabel] = sinc_Huang;
[traindata,trainlabel,testdata,testlabel] = sinc_K(0.4);
%%%------------------------------------------------------------------------
%%%   Global Setting
%%%------------------------------------------------------------------------
nn.hiddensize     = 20;
method            = {'ELM','RELM','WRELM','ORELM'};
type              = {'regression','classification'};
nn.type           = type{1};
nn.inputsize      = size(traindata,1);
nn.activefunction = 's';
nn.orthogonal     = false;
fprintf('            method             |  Training Acc.  |    Testing Acc.   |   Training Time \n');
%%%------------------------------------------------------------------------
%%%   ELM / Original ELM
%%%------------------------------------------------------------------------
nn.method         = method{1};
nn                = elm_initialization(nn);
[nn, acc_train]   = elm_train(traindata, trainlabel, nn);
[nn1, acc_test]   = elm_test(testdata, testlabel, nn);
fprintf('      %19s      |      %.3f      |      %.5f      |      %.5f      \n',nn.method,acc_train,acc_test,nn.time_train);
%%%------------------------------------------------------------------------
%%%   RELM / Regularized ELM
%%%------------------------------------------------------------------------
nn.method         = method{2};
nn                = elm_initialization(nn);
nn.C              = 0.0001;
[nn, acc_train]   = elm_train(traindata, trainlabel, nn);
[nn2, acc_test]   = elm_test(testdata, testlabel, nn);
fprintf('      %19s      |      %.3f      |      %.5f      |      %.5f      \n',nn.method,acc_train,acc_test,nn.time_train);
%%%------------------------------------------------------------------------
%%%   WRELM / Weighted Regularized ELM
%%%------------------------------------------------------------------------
nn.method         = method{3};
nn.wfun           = '1';
nn.scale_method   = 1;
nn                = elm_initialization(nn);
nn.C              = 2^(-20);
[nn, acc_train]   = elm_train(traindata, trainlabel, nn);
[nn3, acc_test]   = elm_test(testdata, testlabel, nn);
fprintf('      %19s      |      %.3f      |      %.5f      |      %.5f      \n',nn.method,acc_train,acc_test,nn.time_train);
%%%------------------------------------------------------------------------
%%%   ORELM / Outlier-Robust ELM
%%%------------------------------------------------------------------------
nn.method         = method{4};
nn                = elm_initialization(nn);
nn.C              = 2^(-40);
[nn, acc_train]   = elm_train(traindata, trainlabel, nn);
[nn4, acc_test]   = elm_test(testdata, testlabel, nn);
fprintf('      %19s      |      %.3f      |      %.5f      |      %.5f      \n',nn.method,acc_train,acc_test,nn.time_train);
%%%------------------------------------------------------------------------
%%%   Plot
%%%------------------------------------------------------------------------
function [nn, acc_test] = elm_test(X,Y,nn)
ndata        = size(X, 2);
tempH        = nn.W*X + repmat(nn.b,1,ndata);
switch lower(nn.activefunction)
    case{'s','sig','sigmoid'}
        H = 1 ./ (1 + exp(-tempH));
    case{'t','tanh'}
        H = tanh(tempH);
end
Y_hat    = nn.beta*H;
if ismember(nn.type,{'c','classification','Classification'})
    [~,label_actual]  = max(Y_hat,[],1);
    [~,label_desired] = max(Y,[],1);
    acc_test = sum(label_actual==label_desired)/ndata;
else
    normfro   = norm(Y-Y_hat,'fro');
    acc_test = sqrt(normfro^2/ndata);
 %   acc_test = sqrt(mse(Y-Y_hat)); 
end
nn.testlabel  = Y_hat;
nn.acc_test   = acc_test;
 
  
 
 - 1
 - 2
 - 3
 - 4
 - 5
 - 6
 - 7
 - 8
 - 9
 - 10
 - 11
 - 12
 - 13
 - 14
 - 15
 - 16
 - 17
 - 18
 - 19
 - 20
 - 21
 - 22
 - 23
 - 24
 - 25
 - 26
 - 27
 - 28
 - 29
 - 30
 - 31
 - 32
 - 33
 - 34
 - 35
 - 36
 - 37
 - 38
 - 39
 - 40
 - 41
 - 42
 - 43
 - 44
 - 45
 - 46
 - 47
 - 48
 - 49
 - 50
 - 51
 - 52
 - 53
 - 54
 - 55
 - 56
 - 57
 - 58
 - 59
 - 60
 - 61
 - 62
 - 63
 - 64
 - 65
 - 66
 - 67
 - 68
 - 69
 - 70
 - 71
 - 72
 - 73
 - 74
 - 75
 - 76
 - 77
 - 78
 - 79
 - 80
 - 81
 - 82
 - 83
 - 84
 - 85
 - 86
 - 87
 - 88
 - 89
 - 90
 - 91
 - 92
 - 93
 - 94
 - 95
 - 96
 - 97
 - 98
 - 99
 - 100
 - 101
 - 102
 - 103
 - 104
 - 105
 
三、运行结果

四、matlab版本及参考文献
1 matlab版本
 2014a
2 参考文献
 [1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
 [2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
 [3]周品.MATLAB 神经网络设计与应用[M].清华大学出版社,2013.
 [4]陈明.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.
 [5]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.
 [6]王琦,关添升,秦本双.基于MRMR的ORELM的短期风速预测[j].可再生能源. 2018,36(01)
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/120934507
        【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
            cloudbbs@huaweicloud.com
        
        
        
        
        
        
        - 点赞
 - 收藏
 - 关注作者
 
            
           
评论(0)