【ORELM回归预测】基于matlab离群鲁棒极限学习机ORELM回归预测【含Matlab源码 1441期】
【摘要】
一、ORELM简介
理论知识参考:基于MRMR的ORELM的短期风速预测
二、部分源代码
clear all;clc;
addpath(genpath('./.'));
%rng('default...
一、ORELM简介
理论知识参考:基于MRMR的ORELM的短期风速预测
二、部分源代码
clear all;clc;
addpath(genpath('./.'));
%rng('default');
%%%------------------------------------------------------------------------
%%% Load Data
%%%------------------------------------------------------------------------
%[traindata,trainlabel,testdata,testlabel] = sinc_Huang;
[traindata,trainlabel,testdata,testlabel] = sinc_K(0.4);
%%%------------------------------------------------------------------------
%%% Global Setting
%%%------------------------------------------------------------------------
nn.hiddensize = 20;
method = {'ELM','RELM','WRELM','ORELM'};
type = {'regression','classification'};
nn.type = type{1};
nn.inputsize = size(traindata,1);
nn.activefunction = 's';
nn.orthogonal = false;
fprintf(' method | Training Acc. | Testing Acc. | Training Time \n');
%%%------------------------------------------------------------------------
%%% ELM / Original ELM
%%%------------------------------------------------------------------------
nn.method = method{1};
nn = elm_initialization(nn);
[nn, acc_train] = elm_train(traindata, trainlabel, nn);
[nn1, acc_test] = elm_test(testdata, testlabel, nn);
fprintf(' %19s | %.3f | %.5f | %.5f \n',nn.method,acc_train,acc_test,nn.time_train);
%%%------------------------------------------------------------------------
%%% RELM / Regularized ELM
%%%------------------------------------------------------------------------
nn.method = method{2};
nn = elm_initialization(nn);
nn.C = 0.0001;
[nn, acc_train] = elm_train(traindata, trainlabel, nn);
[nn2, acc_test] = elm_test(testdata, testlabel, nn);
fprintf(' %19s | %.3f | %.5f | %.5f \n',nn.method,acc_train,acc_test,nn.time_train);
%%%------------------------------------------------------------------------
%%% WRELM / Weighted Regularized ELM
%%%------------------------------------------------------------------------
nn.method = method{3};
nn.wfun = '1';
nn.scale_method = 1;
nn = elm_initialization(nn);
nn.C = 2^(-20);
[nn, acc_train] = elm_train(traindata, trainlabel, nn);
[nn3, acc_test] = elm_test(testdata, testlabel, nn);
fprintf(' %19s | %.3f | %.5f | %.5f \n',nn.method,acc_train,acc_test,nn.time_train);
%%%------------------------------------------------------------------------
%%% ORELM / Outlier-Robust ELM
%%%------------------------------------------------------------------------
nn.method = method{4};
nn = elm_initialization(nn);
nn.C = 2^(-40);
[nn, acc_train] = elm_train(traindata, trainlabel, nn);
[nn4, acc_test] = elm_test(testdata, testlabel, nn);
fprintf(' %19s | %.3f | %.5f | %.5f \n',nn.method,acc_train,acc_test,nn.time_train);
%%%------------------------------------------------------------------------
%%% Plot
%%%------------------------------------------------------------------------
function [nn, acc_test] = elm_test(X,Y,nn)
ndata = size(X, 2);
tempH = nn.W*X + repmat(nn.b,1,ndata);
switch lower(nn.activefunction)
case{'s','sig','sigmoid'}
H = 1 ./ (1 + exp(-tempH));
case{'t','tanh'}
H = tanh(tempH);
end
Y_hat = nn.beta*H;
if ismember(nn.type,{'c','classification','Classification'})
[~,label_actual] = max(Y_hat,[],1);
[~,label_desired] = max(Y,[],1);
acc_test = sum(label_actual==label_desired)/ndata;
else
normfro = norm(Y-Y_hat,'fro');
acc_test = sqrt(normfro^2/ndata);
% acc_test = sqrt(mse(Y-Y_hat));
end
nn.testlabel = Y_hat;
nn.acc_test = acc_test;
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]周品.MATLAB 神经网络设计与应用[M].清华大学出版社,2013.
[4]陈明.MATLAB神经网络原理与实例精解[M].清华大学出版社,2013.
[5]方清城.MATLAB R2016a神经网络设计与应用28个案例分析[M].清华大学出版社,2018.
[6]王琦,关添升,秦本双.基于MRMR的ORELM的短期风速预测[j].可再生能源. 2018,36(01)
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/120934507
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)