【优化算法】多目标蚁狮优化算法(MOALO)【含Matlab源码 1598期】

举报
海神之光 发表于 2022/05/28 23:36:02 2022/05/28
【摘要】 一、获取代码方式 获取代码方式1: 完整代码已上传我的资源:【优化算法】多目标蚁狮优化算法(MOALO)【含Matlab源码 1598期】 获取代码方式2: 通过订阅紫极神光博客付费专栏,凭支付凭证,...

一、获取代码方式

获取代码方式1:
完整代码已上传我的资源:【优化算法】多目标蚁狮优化算法(MOALO)【含Matlab源码 1598期】

获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);

二、蚁狮优化算法简介

蚁狮算法是一种模仿自然界中蚁狮的捕猎机制的智能算法。蚁狮在沙子中,利用它的下颚挖出一个圆锥形的沙坑作为捕猎陷阱。一旦有猎物落陷阱,蚁狮便会将它拖入沙子底部并吃掉。通过与一些其他流行的智能算法比较,例如PSO、GA和杜鹃算法(CS),ALO显示出更好的收敛性、准确性和鲁棒性,但依然存在着收敛准确度低、易陷入局部最优解的缺陷。
(1)蚂蚁随机游走

首先假设由n个蚂蚁组成的蚂蚁种群Xant=(XA,1,XA,n,…,XA,N)T,XdA,n是第n个蚂蚁的第d个变量。蚂蚁移动的数学表达为
在这里插入图片描述
式中,XA,n(t)为迭代t次时第n个蚂蚁的位置;cums m为累积和;tm a x为最大迭代次数。
为防止个体越限,对其进行标准化处理,即
在这里插入图片描述
式中,min C(XdA,n)、max C(XdA,n)分别为第n只蚂蚁随机游走时的最小和最大步长;ud(t)、ld(t)分别为第t次迭代时第d个变量的上界和下界。

三、部分源代码

%_________________________________________________________________________%
%  Multi-Objective Ant Lion Optimizer (MALO) source codes demo            %
%                           version 1.0                                   %
%                                                                         %
%      %
%_________________________________________________________________________%

clc;
clear;
close all;

% Change these details with respect to your problem%%%%%%%%%%%%%%
ObjectiveFunction=@ZDT1;
dim=5;
lb=0;
ub=1;
obj_no=2;

if size(ub,2)==1
    ub=ones(1,dim)*ub;
    lb=ones(1,dim)*lb;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial parameters of the MODA algorithm
max_iter=100;
N=100;
ArchiveMaxSize=100;

Archive_X=zeros(100,dim);
Archive_F=ones(100,obj_no)*inf;

Archive_member_no=0;

r=(ub-lb)/2;
V_max=(ub(1)-lb(1))/10;

Elite_fitness=inf*ones(1,obj_no);
Elite_position=zeros(dim,1);

Ant_Position=initialization(N,dim,ub,lb);
fitness=zeros(N,2);

V=initialization(N,dim,ub,lb);
iter=0;

position_history=zeros(N,max_iter,dim);

for iter=1:max_iter
    
    for i=1:N %Calculate all the objective values first
        Particles_F(i,:)=ObjectiveFunction(Ant_Position(:,i)');
        if dominates(Particles_F(i,:),Elite_fitness)
            Elite_fitness=Particles_F(i,:);
            Elite_position=Ant_Position(:,i);
        end
    end
    
    [Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, Ant_Position, Particles_F, Archive_member_no);
    
    if Archive_member_no>ArchiveMaxSize
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
        [Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
    else
        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    end
    
    Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
    
    % Chose the archive member in the least population area as arrtactor
    % to improve coverage
    index=RouletteWheelSelection(1./Archive_mem_ranks);
    if index==-1
        index=1;
    end
    Elite_fitness=Archive_F(index,:);
    Elite_position=Archive_X(index,:)';
    
    Random_antlion_fitness=Archive_F(1,:);
    Random_antlion_position=Archive_X(1,:)';
    
    for i=1:N
        
        index=0;
        neighbours_no=0;
        
        RA=Random_walk_around_antlion(dim,max_iter,lb,ub, Random_antlion_position',iter);
        
        [RE]=Random_walk_around_antlion(dim,max_iter,lb,ub, Elite_position',iter);
        
        Ant_Position(:,i)=(RE(iter,:)'+RA(iter,:)')/2;
        
        
        
        Flag4ub=Ant_Position(:,i)>ub';
        Flag4lb=Ant_Position(:,i)<lb';
        Ant_Position(:,i)=(Ant_Position(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;
        
    end
    display(['At the iteration ', num2str(iter), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
end

figure

Draw_ZDT1();

hold on

plot(Archive_F(:,1),Archive_F(:,2),'ko','MarkerSize',8,'markerfacecolor','k');

legend('True PF','Obtained PF');
title('MALO');

set(gcf, 'pos', [403   466   230   200])

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114

四、运行结果

在这里插入图片描述

五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/121894898

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。