【优化算法】多策略协同多目标萤火虫算法(MOFA_MOCS)【含Matlab源码 1512期】

举报
海神之光 发表于 2022/05/29 01:03:04 2022/05/29
【摘要】 一、获取代码方式 获取代码方式1: 完整代码已上传我的资源:【优化算法】多策略协同多目标萤火虫算法(MOFA_MOCS)【含Matlab源码 1512期】 获取代码方式2: 通过紫极神光博客主页开通C...

一、获取代码方式

获取代码方式1:
完整代码已上传我的资源:【优化算法】多策略协同多目标萤火虫算法(MOFA_MOCS)【含Matlab源码 1512期】

获取代码方式2:
通过紫极神光博客主页开通CSDN会员,凭支付凭证,私信博主,可获得此代码。

获取代码方式3:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。

备注:开通CSDN会员,仅只能免费获得1份代码(有效期为开通日起,三天内有效);
订阅紫极神光博客付费专栏,可免费获得2份代码(有效期为订阅日起,三天内有效);

二、萤火虫优化算法(FA)简介

1 介绍
萤火虫(firefly)种类繁多,主要分布在热带地区。大多数萤火虫在短时间内产生有节奏的闪光。这种闪光是由于生物发光的一种化学反应,萤火虫的闪光模式因种类而异。萤火虫算法(FA)是基于萤火虫的闪光行为,它是一种用于全局优化问题的智能随机算法,由Yang Xin-She(2009)[1]提出。萤火虫通过下腹的一种化学反应-生物发(bioluminescence)发光。这种生物发光是萤火虫求偶仪式的重要组成部分,也是雄性萤火虫和雌性萤火虫交流的主要媒介,发出光也可用来引诱配偶或猎物,同时这种闪光也有助于保护萤火虫的领地,并警告捕食者远离栖息地。在FA中,认为所有的萤火虫都是雌雄同体的,无论性别如何,它们都互相吸引。该算法的建立基于两个关键的概念:发出的光的强度和两个萤火虫之间产生的吸引力的程度。

2 天然萤火虫的行为
天然萤火虫在寻找猎物、吸引配偶和保护领地时表现出惊人的闪光行为,萤火虫大多生活在热带环境中。一般来说,它们产生冷光,如绿色、黄色或淡红色。萤火虫的吸引力取决于它的光照强度,对于任何一对萤火虫来说,较亮的萤火虫会吸引另一只萤火虫。所以,亮度较低的个体移向较亮的个体,同时光的亮度随着距离的增加而降低。萤火虫的闪光模式可能因物种而异,在一些萤火虫物种中,雌性会利用这种现象猎食其他物种;有些萤火虫在一大群萤火虫中表现出同步闪光的行为来吸引猎物,雌萤火虫从静止的位置观察雄萤火虫发出的闪光,在发现一个感兴趣趣的闪光后,雌性萤火虫会做出反应,发出闪光,求偶仪式就这样开始了。一些雌性萤火虫会产生其他种类萤火虫的闪光模式,来诱捕雄性萤火虫并吃掉它们。

3 萤火虫算法
萤火虫算法模拟了萤火虫的自然现象。真实的萤火虫自然地呈现出一种离散的闪烁模式,而萤火虫算法假设它们总是在发光。为了模拟萤火虫的这种闪烁行为,Yang Xin-She提出了了三条规则(Yang,2009):
(1)假设所有萤火虫都是雌雄同体的,因此一只萤火虫可能会被其他任何萤火虫吸引。
(2)萤火虫的亮度决定其吸引力的大小,较亮的萤火虫吸引较暗的萤火虫。如果没有萤火虫比被考虑的萤火虫更亮,它就会随机移动。
(3)函数的最优值与萤火虫的亮度成正比。
光强(I)与光源距离(r)服从平方反比定律,因此由于空气的吸收,光的强度(I)随着与光源距离的增加而减小,这种现象将萤火虫的可见性限定在了非常有限的半径内:
在这里插入图片描述
萤火虫算法的主要实现步骤如下:
在这里插入图片描述
其中I0为距离r=0时的光强(最亮),即自身亮度,与目标函数值有关,目标值越优,亮度越亮;γ为吸收系数,因为荧光会随着距离的增加和传播媒介的吸收逐渐减弱,所以设置光强吸收系数以体现此特性,可设置为常数;r表示两个萤火虫之间的距离。有时也使用单调递减函数,如下式所示。
在这里插入图片描述
第二步为种群初始化:
在这里插入图片描述
其中t表示代数,xt表示个体的当前位置,β0exp(-γr2)是吸引度,αε是随机项。下一步将会计算萤火虫之间的吸引度:
在这里插入图片描述
其中β0表示r=0时的最大吸引度。
下一步,低亮度萤火虫向较亮萤火虫运动:
在这里插入图片描述
最后一个阶段,更新光照强度,并对所有萤火虫进行排序,以确定当前的最佳解决方案。萤火虫算法的主要步骤如下所示。

Begin
	初始化算法基本参数:设置萤火虫数目n,最大吸引度β0,光强吸收系数γ,步长因子α,最大迭代次数MaxGeneration或搜索精度ε;
	初始化:随机初始化萤火虫的位置,计算萤火虫的目标函数值作为各自最大荧光亮度I0;
	t=1
	while(t<=MaxGeneration || 精度>ε)
		计算群体中萤火虫的相对亮度I(2)和吸引度β(式5),根据相对亮度决定萤火虫的移动方向;
		更新萤火虫的空间位置,对处在最佳位置的萤火虫进行随机移动(式6);
		根据更新后萤火虫的位置,重新计算萤火虫的亮度I0;
		t=t+1
	end while
	输出全局极值点和最优个体值。
end


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13

萤火虫算法与粒子群算法(PSO)和细菌觅食算法(BFA)有相似之处。在位置更新方程中,FA和PSO都有两个主要分量:一个是确定性的,另一个是随机性的。在FA中,吸引力由两个组成部分决定:目标函数和距离,而在BFA中,细菌之间的吸引力也有两个组成部分:适应度和距离。萤火虫算法实现时,整个种群(如n)需要两个内循环,特定迭代需要一个外循环(如I),因此最坏情况下FA的计算复杂度为O(n2I)。

三、部分源代码

function MOFA_MOCS_ZDT1
    %多策略协同多目标萤火虫算法
    %Programmed by Kevin Kong
    %测试问题ZDT-1
    clc;
    global NP N T_MAX gamma beta0 epsilon M V
    NP = 100;%种群大小
    T_MAX = 500;%最大迭代次数
    N = 100;%外部档案规模
    gamma = 1;%光吸收系数
    beta0 = 1;%最大吸引力
    M = 2;%目标函数个数
    V = 30;%决策变量个数
    t = 1;%迭代次数
    epsilon = get_epsilon();
    %变量范围在[0,1]
    min_range = zeros(1,V);
    max_range = ones(1,V);
    pop = init(NP,M,V,min_range,max_range);%初始化种群
    Arc = pop(non_domination_sort(pop,M,V),:);%非支配排序
    while(t <= T_MAX)
        plot(pop(:,V+1),pop(:,V+2),'*');
        str = sprintf('第%d代',t);
        title(str);
        drawnow;
        offspring = pop;%子代
        for i = 1:NP
            for j = 1:NP
                domination = get_domination(pop(i,:),pop(j,:),M,V);
                if(domination ~= -1)
                    %i和j之间存在支配关系
                    g = Arc(1+fix((size(Arc,1)-1)*rand(1)),:);%从Arc里随机选取一个个体作为g*
                    if(domination == 0)
                        %i支配j
                        offspring(j,1:V) = firefly_move(pop(i,:),pop(j,:),V,beta0,gamma,true,g);
                        offspring(j,1:V) = outbound(offspring(j,1:V),V,min_range,max_range);
                    else
                        %j支配i
                        offspring(i,1:V) = firefly_move(pop(j,:),pop(i,:),V,beta0,gamma,true,g);
                        offspring(i,1:V) = outbound(offspring(i,1:V),V,min_range,max_range);
                    end
                else
                    %i和j之间不存在支配关系
                    g = Arc(1+fix((size(Arc,1)-1)*rand(1)),:);%从Arc里随机选取一个个体作为g*
                    res = firefly_move(pop(i,:),pop(j,:),V,beta0,gamma,false,g);
                    offspring(i,1:V) = res(1,:);
                    offspring(i,1:V) = outbound(offspring(i,1:V),V,min_range,max_range);
                    offspring(j,1:V) = res(2,:);
                    offspring(j,1:V) = outbound(offspring(j,1:V),V,min_range,max_range);
                end
            end
        end
        pop = offspring;%更新萤火虫位置
        for i = 1:N
            pop(i,V+1:V+M) = evaluate_objective(pop(i,:));%评估萤火虫个体
        end
        Arc = update_Arc(pop,Arc,N,M,V,epsilon);%利用ε-三点最短路径方法维持Arc档案
        t = t + 1;
    end
end
%% 
function f = init(N,M,V,min,max)
    %初始化种群,随机生成个体并计算其适度值
    %N:种群大小
    %M:目标函数数量
    %V:决策变量数
    %min:变量范围下限
    %max:变量范围上限
    f = [];%存放个体和目标函数值,1:V是决策变量,V+1:V+2是目标函数值
    for j = 1:V
        delta(j) = (max(j) - min(j))/N;%将决策变量x(j)的区间均匀划分成N等分;
        lamda = min(j):delta(j):max(j);%得到N个子区间
        for i = 1:N
            %从N个子区间中随机选择一个
            [~,n] = size(lamda);%获得子区间个数n
            rand_n = 1 + fix((n-2)*rand(1));%随机位置
            min_range = lamda(rand_n);%获得子区间的下限
            max_range = lamda(rand_n+1);%获得子区间的上限
            f(i,j) = min_range + (max_range - min_range)*rand(1);%随机生成
            lamda(rand_n) = [];%删除该子区间
        end
    end
    %计算个体的适度值
    for i = 1:N
        f(i,V+1:V+M) = evaluate_objective(f(i,:));%计算目标函数值
    end
end
%%
function f = evaluate_objective(x)
    %根据目标函数计算适度值,测试方法:ZDT-1
    global V 
    f = [];
    f(1) = x(1);%目标函数1
    g = 1;
    g_tmp = 0;
    for i = 2:V
        g_tmp = g_tmp + x(i);
    end
    g = g + 9*g_tmp/(V-1);
    f(2) = g*(1-sqrt(x(1)/g));%目标函数2
end
%%
function f = non_domination_sort(x,M,V)
    %非支配排序,得到非支配解集
    %M:目标函数数量
    %V:决策变量数
    [N,~] = size(x);%获取种群个体数
    rank = 1;%pareto等级
    F(rank).f = [];%非支配解集
    pop = [];%种群
    for i = 1:N
        %得到最高等级个体和个体间的支配关系
        pop(i).np = 0;%被支配数
        pop(i).sp = [];%支配个体集合
        for j = 1:N
            %个体支配规则:对任意的目标函数,均有fk(x1)<=fk(x2),且存在fk(x1)<fk(x2)
            domination = get_domination(x(i,:),x(j,:),V,M);%获得i和j之间的支配关系
            if(domination == 0)
                %i支配j
                pop(i).sp = [pop(i).sp j];%把个体j的索引加入支配集合中
            elseif(domination == 1)
                %i被j支配
                pop(i).np = pop(i).np + 1;%i的被支配数+1
            end
        end
        if(pop(i).np == 0)
            x(i,V+3) = rank;%rank等级最高,为1
            F(rank).f = [F(rank).f i];%把个体i加入到非支配解集中
        end
    end
    f = F(rank).f;
end
%%
function res = get_domination(x1,x2,V,M)
    %获得两个个体的支配关系,x1支配x2返回0,x2支配x1返回1,否则返回-1
    less = 0;%小于
    equal = 0;%等于
    more = 0;%大于
    for k = 1:M
        %遍历每一个目标函数
        if(x1(V+k) < x2(V+k))
            less = less + 1;
        elseif(x1(V+k) == x2(V+k))
            equal = equal + 1;
        else
            more = more + 1;
        end
    end

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148

四、运行结果

在这里插入图片描述

五、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]群体智能优化算法之萤火虫算法(Firefly Algorithm,FA)

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/121273592

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。