【病灶分类】基于matlab粒子群算法优化SVM病灶分类【含Matlab源码 1520期】
【摘要】
一、简介
首先对病灶图片进行gabor小波纹理特征提取,然后输入进经PSO优化的svm进行训练与测试分类
二、部分源代码
%% 清空环境变量以及加载数据
clc
clear
close all
wa...
一、简介
首先对病灶图片进行gabor小波纹理特征提取,然后输入进经PSO优化的svm进行训练与测试分类
二、部分源代码
%% 清空环境变量以及加载数据
clc
clear
close all
warning off
format long
format compact
%% 网络结构建立
%读取数据
load img_tz %纹理特征
%%
%由于特征维数过高,每个gabbor特征有1440维,不利于训练网络,因此我们用PCA进行降维
[pca1,pca2,pca3]=pca(input);
proportion=0;
i=1;
while(proportion < 95)
proportion = proportion + pca3(i);
i = i+1;
end
input=pca2(:,1:10);
%随机提取训练样本,预测样本
rand('seed',0)
[m n]=sort(rand(1,size(input,1)));
m=150;
train_wine=input(n(1:m),:);
train_wine_labels=output(n(1:m),:);
test_wine=input(n(m+1:end),:);
test_wine_labels=output(n(m+1:end),:);
%%
%%%%% 选择最佳的SVM参数c&g-利用粒子群算法进行选择
% 粒子群参数初始化
pso_option = struct('c1',0.9,'c2',0.9,...
'maxgen',200,'sizepop',50, ...
'k',0.6,'wV',0.8,'wP',0.8, ...
'popcmax',10^2,'popcmin',10^(-2),...
'popgmax',10^2,'popgmin',10^(-2));
%%
[bestacc,bestc,bestg,trace] = psoSVMcgForClass(train_wine_labels,train_wine,test_wine_labels,test_wine,pso_option);
GlobalParams=[bestc bestg];
img3= double(imresize(img2,[48 48],'bilinear')); %采用'bilinear':采用双线性插值算法扩展为48*48
H2 = filter_image_with_Gabor_bank1(img3,filter_bank,64);%%提取gabor纹理特征
suptitle('正常对应GABOR多尺度纹理特征图');
data_matrix1=[data_matrix1 H2];%将提取的特征放进data_matrix1中
disp(sprintf('完成正常文件夹中第%i图的gabor特征提取',i));
end
tz_image1=data_matrix1';
%%
class1path=dir('溃疡');
data_matrix1=[];
for i=1%:length(class1path)-2
imgpath=['溃疡\' class1path(i+2).name];%煤炭的路径
img1=imread(imgpath);%读取图片
figure;imshow(img1);title('溃疡原始图片')
img2=rgb2gray(img1);%灰度化
figure;imshow(img2);title('溃疡原始图片灰度图')
img3= double(imresize(img2,[48 48],'bilinear')); %采用'bilinear':采用双线性插值算法扩展为48*48
H2 = filter_image_with_Gabor_bank1(img3,filter_bank,64);%%提取gabor纹理特征
data_matrix1=[data_matrix1 H2];%将提取的特征放进data_matrix1中
suptitle('溃疡对应GABOR多尺度纹理特征图');
disp(sprintf('完成溃疡文件夹中第%i图的gabor特征提取',i));
end
tz_image2=data_matrix1';
%% 保存结果 以及对应标签 其中正常设为第一类 溃疡设为第二类
input=[tz_image1;tz_image2];
output=[ones(1,size(tz_image1,1)) 2*ones(1,size(tz_image2,1))]';
function [bestCVaccuarcy,bestc,bestg,trace] = psoSVMcgForClass(train_wine_labels,train_wine,test_wine_labels,test_wine,pso_option)
if nargin == 4
pso_option = struct('c1',0.9,'c2',0.9,'maxgen',100,'sizepop',10, ...
'k',0.6,'wV',0.8,'wP',0.8,'v',5, ...
'popcmax',10^2,'popcmin',10^(-2),'popgmax',10^2,'popgmin',10^(-2));
end
% c1:初始为1.5,pso参数局部搜索能力
% c2:初始为1.7,pso参数全局搜索能力
% maxgen:初始为200,最大进化数量
% sizepop:初始为20,种群最大数量
% k:初始为0.6(k belongs to [0.1,1.0]),速率和x的关系(V = kX)
% wV:初始为1(wV best belongs to [0.8,1.2]),速率更新公式中速度前面的弹性系数
% wP:初始为1,种群更新公式中速度前面的弹性系数
% v:初始为3,SVM Cross Validation参数
% popcmax:初始为100,SVM 参数c的变化的最大值.
% popcmin:初始为0.1,SVM 参数c的变化的最小值.
% popgmax:初始为1000,SVM 参数g的变化的最大值.
% popgmin:初始为0.01,SVM 参数c的变化的最小值.
Vcmax = pso_option.k*pso_option.popcmax;
Vcmin = -Vcmax ;
Vgmax = pso_option.k*pso_option.popgmax;
Vgmin = -Vgmax ;
eps = 10^(-3);
% 产生初始粒子和速度
for i=1:pso_option.sizepop
% 随机产生种群和速度
pop(i,1) = (pso_option.popcmax-pso_option.popcmin)*rand+pso_option.popcmin;
pop(i,2) = (pso_option.popgmax-pso_option.popgmin)*rand+pso_option.popgmin;
V(i,1)=Vcmax*rands(1,1);
V(i,2)=Vgmax*rands(1,1);
% 计算初始适应度
fitness(i) =fun(pop(i,:),train_wine_labels,train_wine,test_wine_labels,test_wine)
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/121311611
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)