【图像转换】基于matlab灰度图像转换彩色图像【含Matlab 1233期】
【摘要】
一、获取代码方式
获取代码方式1: 完整代码已上传我的资源:【图像转换】基于matlab灰度图像转换彩色图像【含Matlab 1233期】
获取代码方式2: 通过订阅紫极神光博客付费专栏,凭支付凭证,...
一、获取代码方式
获取代码方式1:
完整代码已上传我的资源:【图像转换】基于matlab灰度图像转换彩色图像【含Matlab 1233期】
获取代码方式2:
通过订阅紫极神光博客付费专栏,凭支付凭证,私信博主,可获得此代码。
备注:
订阅紫极神光博客付费专栏,可免费获得1份代码(有效期为订阅日起,三天内有效);
二、部分源代码
tic
rslt = gray2rgb('test1_destination.jpg','test1_source.jpg');
gray = imread('test1_destination.jpg');
color = imread('test1_source.jpg');
figure
subplot(1,3,1); imshow(uint8(gray)); title('gray image');
subplot(1,3,2); imshow(uint8(color)); title('color source image');
subplot(1,3,3); imshow(uint8(rslt)); title('colored image');
toc
function R=gray2rgb(dest,src)
%gray2rgb converts a gray image to RGB based on the colors of the source
%image
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This function converts a gray image to RGB based on the colors of the
% source image.
%
% R = gray2rgb(dest, src)
% dest - destination or target (grayscale) image that you want to color
% src - source (color image) that you want to use as a color pallet
%
% You can use the attached test images. Use the following combinations:
% gray2rgb('test1_destination.jpg', 'test1_source.jpg')
% gray2rgb('nature_desitnation.jpg', 'nature_source.jpg')
%
% This code was originally inspired by the code gray2rgb by Jeny Rajan and
% Chandrashekar P.S. The code was optimized and rewritten to more closely
% achieve what was described in the paper "Transfering Color to Grayscale
% Images" by Welsh, Ashikhmin and Mueller. Identical results to Rajan's
% code are achieved much more quickly, especially for large images.
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
imt = imread(dest); % read target image
ims = imread(src); % read source image
[tx, ty, tz] = size(imt); % get size of target image
[~, ~, sz] = size(ims); % get 3rd dim of source
if tz ~= 1 % convert the destination image to grayscale if not already
imt = rgb2gray(imt);
end
if sz ~= 3 % check to see that the source image is RGB
disp ('img2 must be a color image (not indexed)');
else
imt(:, :, 2) = imt(:, :, 1); % add green channel to grayscale img
imt(:, :, 3) = imt(:, :, 1); % add blue channel to grayscale img
% Converting to ycbcr color space
% ycbcr, y: luminance, cb: blue difference chroma, cr: red difference chroma
% s - source, t - target
nspace1 = rgb2ycbcr(ims); % convert source img to ycbcr color space
nspace2 = rgb2ycbcr(imt); % convert target img to ycbcr color space
% Get unique values of the luminance
[ms, ics, ~] = unique(double(nspace1(:, :, 1))); % luminance of src img
mt = unique(double(nspace2(:, :, 1))); % luminance of target img
% Establish values for the cb and cr content from the source
% image
cbs = nspace1(:, :, 2);
cbs = cbs(ics);
crs = nspace1(:, :, 3);
crs = crs(ics);
% get max and min luminance of src and target
m1 =max(ms);
m2 = min(ms);
m3 = max(mt);
m4 = min(mt);
d1 = m1 - m2; % get difference between max and min luminance
d2 = m3 - m4;
% Normalization
dx1 = ms;
dx2 = mt;
dx1 = (dx1 * 255) / (255 - d1); % normalize source
dx2 = (dx2 * 255) / (255 - d2); % normalize target
[mx, ~] = size(dx2);
% luminance and normalization of target image
nimage_norm = double(nspace2(:, :, 1));
nimage_norm =(nimage_norm * 255) / (255 - d2);
% Luminance Comparison
nimage = nspace2;
% reshape cb and cr channels to be column vector
nimage_cb = reshape(nimage_cb, numel(nimage_cb), 1);
nimage_cr = reshape(nimage_cr, numel(nimage_cr), 1);
% CHANGE: Loop through dx2 luminance values and find location of
% corresponding luminance values in nimage_norm. Assign cb and cr
% values to nimage's cb and cr channels for matching values
for i = 1:mx
iy = dx2(i);
tmp = abs(dx1 - iy); % calculate absolute difference between
% specific normalized target luminance value and normalized
% source luminance values
% finds min value of absolute diff. between specific
% normalized target luminance value and normalized source
% luminance values
r = find(tmp == ck); % finds row and column where tmp = ck
mtch = find(nimage_norm == iy); % find linear indicies of matching
% luminance values
nimage_cb(mtch) = cb(1); % set cb values based on matching lum vals
nimage_cr(mtch) = cr(1); % set cr values based on matching lum vals
end
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
三、运行结果
四、matlab版本及参考文献
1 matlab版本
2014a
2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]梁东云,吴晓云,刘萌.基于MATLAB的数字图像加密研究[J].系统仿真技术. 2020,16(04)
文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。
原文链接:qq912100926.blog.csdn.net/article/details/121321238
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)