【语音去噪】基于matlab GUI谱减法+维纳滤波语音去噪(带面板+信噪比)【含Matlab源码 1661期】

举报
海神之光 发表于 2022/05/29 00:34:50 2022/05/29
【摘要】 一、简介 1 维纳滤波法 维纳滤波法(wiener filter)也是一个比较经典的传统做法,它的本质是估计出一个线性滤波器,也就是一个向量,这个滤波器会对不同的频段进行不同程度的抑制,其保真效果会比谱...

一、简介

1 维纳滤波法
维纳滤波法(wiener filter)也是一个比较经典的传统做法,它的本质是估计出一个线性滤波器,也就是一个向量,这个滤波器会对不同的频段进行不同程度的抑制,其保真效果会比谱减法要好一些。

我们这里不会讲详细的推导过程,只讲其大致思想。因为这么大功夫推导出来,还是有很多不能解决的问题,还不如深度学习train一发。想看详细推导了可以去看知乎的卡尔曼滤波器详解——从零开始(3) Kalman Filter from Zero这篇,于泓-语音增强-维纳滤波这个视频讲的更偏向于应用,都很棒。

还有就是这里讲的是smoothing的问题,即根据未来的信号,过去的信号以及现在的信号来推测出现在的干净信号。除此之外,还有prediction和filtering的问题,prediction是指根据过去的和现在的信号,预测未来的干净信号;filtering的问题是指根据过去和现在的信号,推测现在的干净信号。所以这里讲的方法没法应用于实时语音去噪,只能在拿到整段信号之后,对这段信号进行去噪。

维纳滤波器的设计准则为使得干净信号x(n)x(n)和估计的干净信号x ^ ( n ) 之间的差值越小越好,即计算一个最小均方差
在这里插入图片描述
在这里插入图片描述

2 谱减法
应该是最早被用于语音去噪的方法,它的思想非常简单,就是通过估计出噪声,并在频域里将其幅值剪掉,再还原,就结束了。为了表示方便,我们先假设纯净的声音为x(n),原始声音为y(n),噪声为e(x),就有y(n)=x(n)+e(n)
这里只有y(n)是我们有的,其他x(n)和e(n)都还不知道,目的是把x(n)给求出来。
noisereduce中的stationary的方法就是用谱减法去做的,效果还是不错的,不过也只能应对于stationary noise。
我们按谱减法步骤来说明一下整个过程。
(1)截取头部一小段语音作为噪声
e(m)=y(n)[:m]
其中e表示噪声信号,y表示原始信号,m和n表示sample的数量。
我们认为stationary noise是一直存在于背景当中的声音,而人声一般在开头的几十毫秒是没有的,所以就默认取前面一小段作为噪声。不过当无法确定噪声的时候,把整段声音都作为噪声也是可以的,noisereduce就是这么做的。
(2)分别计算原始音频和噪声的STFT,Y(ω)和E(ω)。
(3)根据噪声的频谱幅值,对原始音频的频谱幅值进行谱减。
在这里插入图片描述
这样做不好的地方就是会有很多坑坑洼洼的噪声频率残留,这个现象也被称为是音乐噪声。实际操作过会发现这种方法减了和没减差不多。因此有人提出了过减法,就是宁可错杀一千不能放过一个的做法。
在这里插入图片描述
其中,α∈[0,+∞]是过减因子,β∈[0,1]是谱下限参数,用来控制残留多少的噪声。这样减出来噪声会明显少了很多,但声音也会随着α \alphaα的增大而逐渐失真。
noisereduce中的具体实现略有不同,它过减用∣E(ω)∣的方差来控制,一般是1.5倍或者1.0倍的方差。代码片段如下所示

self.mean_freq_noise = np.mean(noise_stft_db, axis=1)
self.std_freq_noise = np.std(noise_stft_db, axis=1)
self.noise_thresh = self.mean_freq_noise + self.std_freq_noise * self.n_std_thresh_stationary

  
 
  • 1
  • 2
  • 3

小于noise_thresh的幅值会置0,其余的保留。n_std_thresh_stationary为0时,就是没有过减的式(2−2)。
(4)对∣ X ^ ( ω ) ∣做平滑处理,使得声音失真没那么严重。
noisereduce中使用的scipy.signal.fftconvolve来实现这一过程。
(5)结合原始音频的相位,还原谱减后的音频。这就是个反向STFT的过程。

二、部分源代码

% algorithm_flag = 0;
function varargout = gui(varargin)
% GUI MATLAB code for gui.fig
%      GUI, by itself, creates a new GUI or raises the existing
%      singleton*.
%
%      H = GUI returns the handle to a new GUI or the handle to
%      the existing singleton*.
%
%      GUI('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in GUI.M with the given input arguments.
%
%      GUI('Property','Value',...) creates a new GUI or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before gui_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to gui_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help gui

% Last Modified by GUIDE v2.5 06-Apr-2021 19:48:53

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @gui_OpeningFcn, ...
                   'gui_OutputFcn',  @gui_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before gui is made visible.
function gui_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to gui (see VARARGIN)

% Choose default command line output for gui
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes gui wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = gui_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


%算法1
function pushbutton1_Callback(hObject, eventdata, handles)
set(handles.text6, 'String','谱减法');
%谱减法语音降噪
global filename;
[xx, fs] = audioread(filename);           % 读入数据文件  样本数据 xx  该数据的采样率 Fs。
xx=xx-mean(xx);                         % 消除直流分量
global x;
x=xx/max(abs(xx));                      % 幅值归一化   abs 数据绝对值

IS=0.25;                                % 设置前导无话段长度
wlen=200;                               % 设置帧长为25ms
inc=80;                                 % 设置帧移为10ms
global SNR;
%SNR=5;                                  % 设置信噪比SNR
N=length(x);                            % 信号长度

global signal
signal=awgn(x,SNR,'measured','db');               % 叠加噪声

global snr1;
global snr2;
snr1=SNR_Calc(x,signal);            % 计算初始信噪比
NIS=fix((IS*fs-wlen)/inc +1);           % 求前导无话段帧数

a=4; b=0.001;                           % 设置参数a和b
global output;
output=SpectralSub(signal,wlen,inc,NIS,a,b);% 谱减
snr2=SNR_Calc(x,output);            % 计算谱减后的信噪比
snr=snr2-snr1;
fprintf('snr1=%5.4f   snr2=%5.4f   snr=%5.4f\n',snr1,snr2,snr);       
% %显示图片
% handles.x = x;
% axes(handles.axes1);
% plot(handles.x);    
% handles.signal = signal;
% axes(handles.axes2);
% plot(handles.signal);
% handles.output = output;
% axes(handles.axes3);
% plot(handles.output);


%算法2
function pushbutton2_Callback(hObject, eventdata, handles)
set(handles.text6, 'String','维纳滤波');
%基于先验信噪比的维纳滤波算法语音降噪
global filename;
[xx, fs] = audioread(filename);           % 读入数据文件
xx=xx-mean(xx);                         % 消除直流分量
global x;
x=xx/max(abs(xx));                      % 幅值归一化

IS=0.25;                                % 设置前导无话段长度
wlen=200;                               % 设置帧长为25ms
inc=80;                                 % 设置帧移为10ms
global SNR;
%SNR=5;                                  % 设置信噪比SNR
NIS=fix((IS*fs-wlen)/inc +1);           % 求前导无话段帧数
alpha=0.95;
global signal;
signal=awgn(x,SNR,'measured','db');               % 叠加噪声

global output;
output=Weina_Im(x,wlen,inc,NIS,alpha) ;
output=output/max(abs(output));
len=min(length(output),length(x));
x=x(1:len);
signal=signal(1:len);
output=output(1:len);
global snr1;
global snr2;
snr1=SNR_Calc(x,signal);            % 计算初始信噪比
snr2=SNR_Calc(x,output);            % 计算降噪后的信噪比
snr=snr2-snr1;
fprintf('snr1=%5.4f   snr2=%5.4f   snr=%5.4f\n',snr1,snr2,snr);
% %显示图片
% handles.x = x;
% axes(handles.axes1);
% plot(handles.x);    
% handles.signal = signal;
% axes(handles.axes2);
% plot(handles.signal);
% handles.output = output;
% axes(handles.axes3);
% plot(handles.output);

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162

三、运行结果

在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1]韩纪庆,张磊,郑铁然.语音信号处理(第3版)[M].清华大学出版社,2019.
[2]柳若边.深度学习:语音识别技术实践[M].清华大学出版社,2019.

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/122372786

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。