【单目标优化求解】基于matlab多阶段动态扰动和动态惯性权重布谷鸟算法求解单目标优化问题【含Matlab源码 1656期】

举报
海神之光 发表于 2022/05/29 00:21:20 2022/05/29
【摘要】 一、布谷鸟算法简介(具体理论见参考文献[3]) 布谷鸟算法,英文叫做Cuckoo search (CS algorithm)。首先还是同样,介绍一下这个算法的英文含义, Cuckoo是布谷鸟的意思,啥是...

一、布谷鸟算法简介(具体理论见参考文献[3])

布谷鸟算法,英文叫做Cuckoo search (CS algorithm)。首先还是同样,介绍一下这个算法的英文含义, Cuckoo是布谷鸟的意思,啥是布谷鸟呢,是一种叫做布谷的鸟,o(∩_∩)o ,这种鸟她妈很懒,自己生蛋自己不养,一般把它的宝宝扔到别的种类鸟的鸟巢去。但是呢,当孵化后,遇到聪明的鸟妈妈,一看就知道不是亲生的,直接就被鸟妈妈给杀了。于是这群布谷鸟宝宝为了保命,它们就模仿别的种类的鸟叫,让智商或者情商极低的鸟妈妈误认为是自己的亲宝宝,这样它就活下来了。
布谷鸟搜索算法(Cuckoo Search, CS)是2009年Xin-She Yang 与Suash Deb在《Cuckoo Search via Levy Flights》一文中提出的一种优化算法。布谷鸟算法是一种集合了布谷鸟巢寄生性和莱维飞行(Levy Flights)模式的群体智能搜索技术,通过随机游走的方式搜索得到一个最优的鸟巢来孵化自己的鸟蛋。这种方式可以达到一种高效的寻优模式。

1 布谷鸟的巢寄生性
在这里插入图片描述
2 莱维飞行
在这里插入图片描述
图1.模拟莱维飞行轨迹示意图

3 布谷鸟搜索算法的实现过程
在这里插入图片描述

二、部分源代码

%% 清除环境变量
clear 
clc

%% 参数设置
N = 25;             % 种群规模
Function_name = 'F1';         % 从F1到F23的测试函数的名称(本文中的表123)
Max_iteration = 1000;           % 最大迭代次数
cnt_max = 30;
% 加载所选基准函数的详细信息
[lb, ub, dim, fobj] = Get_Functions_details(Function_name);

Curve_MACS = zeros(1, Max_iteration);
Curve_CS = zeros(1, Max_iteration);
Curve_BA = zeros(1, Max_iteration);
Curve_FPA = zeros(1, Max_iteration);
Curve_ASCSA = zeros(1, Max_iteration);

for cnt = 1:cnt_max
    % 初始化种群位置
    X = initialization(N, dim, ub, lb);
    
    [MACS_Best_score(cnt), MACS_Best_pos(cnt, :), MACS_Curve] = MACS(X, N, Max_iteration, lb, ub, dim, fobj);
    [CS_Best_score(cnt), CS_Best_pos(cnt, :), CS_Curve] = CS(X, N, Max_iteration, lb, ub, dim, fobj);
    [BA_Best_score(cnt), BA_Best_pos(cnt, :), BA_Curve] = BA(X, N, Max_iteration, lb, ub, dim, fobj);
    [FPA_Best_score(cnt), FPA_Best_pos(cnt, :), FPA_Curve] = FPA(X, N, Max_iteration, lb, ub, dim, fobj);
    [ASCSA_Best_score(cnt), ASCSA_Best_pos(cnt, :), ASCSA_Curve] = ASCSA(X, N, Max_iteration, lb, ub, dim, fobj);
    
    Curve_MACS = Curve_MACS+MACS_Curve;
    Curve_CS = Curve_CS+CS_Curve;
    Curve_BA = Curve_BA+BA_Curve;
    Curve_FPA = Curve_FPA+FPA_Curve;
    Curve_ASCSA = Curve_ASCSA+ASCSA_Curve;
end


Curve_MACS = Curve_MACS/cnt_max;
Curve_CS = Curve_CS/cnt_max;
Curve_BA = Curve_BA/cnt_max;
Curve_FPA = Curve_FPA/cnt_max;
Curve_ASCSA = Curve_ASCSA/cnt_max;

std_MACS = std(MACS_Best_score);
std_CS = std(CS_Best_score);
std_BA = std(BA_Best_score);
std_FPA = std(FPA_Best_score);
std_ASCSA = std(ASCSA_Best_score);

best_MACS = max(MACS_Best_score);
best_CS = max(CS_Best_score);
best_BA = max(BA_Best_score);
best_FPA = max(FPA_Best_score);
best_ASCSA = max(ASCSA_Best_score);

worst_MACS = min(MACS_Best_score);
worst_CS = min(CS_Best_score);
worst_BA = min(BA_Best_score);
worst_FPA = min(FPA_Best_score);
worst_ASCSA = min(ASCSA_Best_score);

mean_MACS = mean(MACS_Best_score);
mean_CS = mean(CS_Best_score);
mean_BA = mean(BA_Best_score);
mean_FPA = mean(FPA_Best_score);
mean_ASCSA = mean(ASCSA_Best_score);

%% 画图
% 1、画出所选基准函数的三维立体图形
figure;
func_plot(Function_name);
title(Function_name)
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
img =gcf;  %获取当前画图的句柄
print(img, '-dpng', '-r600', './img4.png')         %即可得到对应格式和期望dpi的图像
% 2、画出目标函数值变化曲线图
figure;
t = 1:Max_iteration;
semilogy(t, Curve_MACS, 'rd-',  t, Curve_CS, 'go-', t, Curve_BA, 'bs-',  t, Curve_FPA, 'mv-', t, Curve_ASCSA, 'k^-', ...
    'linewidth', 1.5, 'MarkerSize', 8, 'MarkerIndices', 1:50:Max_iteration);
legend('MACS', 'CS', 'BA', 'FPA', 'ASCSA');
% title(Function_name)
xlabel('Iteration');
ylabel('Fitness');
axis fill
grid on
box on
img =gcf;  %获取当前画图的句柄
print(img, '-dpng', '-r600', './img3.png')         %即可得到对应格式和期望dpi的图像
%% 显示结果
disp(['函数:', num2str(Function_name)]);
disp(['MACS:最大值: ', num2str(best_MACS), ',最小值:', num2str(worst_MACS), ',平均值:', num2str(mean_MACS), ',标准差:', num2str(std_MACS)]);
disp(['CS:最大值: ', num2str(best_CS), ',最小值:', num2str(worst_CS), ',平均值:', num2str(mean_CS), ',标准差:', num2str(std_CS)]);
disp(['BA:最大值: ', num2str(best_BA), ',最小值:', num2str(worst_BA), ',平均值:', num2str(mean_BA), ',标准差:', num2str(std_BA)]);
disp(['FPA:最大值: ', num2str(best_FPA), ',最小值:', num2str(worst_FPA), ',平均值:', num2str(mean_FPA), ',标准差:', num2str(std_FPA)]);
disp(['ASCSA:最大值: ', num2str(best_ASCSA), ',最小值:', num2str(worst_ASCSA), ',平均值:', num2str(mean_ASCSA), ',标准差:', num2str(std_ASCSA)]);

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97

三、运行结果

在这里插入图片描述
在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.
[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.
[3]张珍珍,贺兴时,于青林,杨新社.多阶段动态扰动和动态惯性权重的布谷鸟算法[J].计算机工程与应用

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/122500734

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。