【人脸识别】基于matlab GUI PCA人脸识别(识别率)【含Matlab源码 802期】

举报
海神之光 发表于 2022/05/29 00:18:22 2022/05/29
【摘要】 一、简介 1 PCA-SVM原理 1.1 主成分分析PCA 本文处理的所有原始图片都是112x 92大小的pgm格式图片, 每幅图片包含10304个像素点, 每一行代表一个样本,维数就是10304维。维...

一、简介

1 PCA-SVM原理
1.1 主成分分析PCA
本文处理的所有原始图片都是112x 92大小的pgm格式图片, 每幅图片包含10304个像素点, 每一行代表一个样本,维数就是10304维。维数过大使得数据处理工作十分复杂,同时,图片特征之间的强相关性还会导致“维数灾难”。快速高效的人脸识别,其关键在于提取到精准表征人脸的特征。从人脸图像中找出最能表征人脸的特征空间,是主成分分析(Principal Component Analysis, PC A) [2] 在人脸特征提取中的基本思想。在这个过程中, 不能表征人脸的属性会被剔除(降维的过程),也就是在一个高维特征空间中利用一组系数对特征加权,来重新表示一张人脸图片。PCA过程的数学描述如下:
在这里插入图片描述
在这里插入图片描述
1.2 支持向量机SVM
给定训练集,在特征空间上找到一个分类超平面,将样本点分到不同的类。存在唯一的分类超平面,使得样本点距离分类超平面的距离最大。其中,距离超平面最近的点为该超平面的支持向量。找到该超平面后,对于待测点,通过计算该点相对于超平面的位置进行分类。其中,一个点距离分类超平面的距离越大,表明分类预测的确信程度越高。
支持向量机(Support Vector Machine, SVM) 需要做的就是找出一个超平面, 使得在两类样本点能完全分离的情况下,尽可能使样本边界的距离最大。
在这里插入图片描述
SVM是一个两类分类器, 而大多数实际分类问题都是多类分类问题, 那么就需要利用SVM这个二分类器去实现一个多类问题的分类。本文人脸识别程序中, 采用的是一对一的投票策略, 即在任意两类样本之间设计一个SVM分类器,分类为得票最多的类。

2 MATLAB工具软件
本文通过MATLAB工具软件, 对PC A-SVM人脸识别方法进行仿真计算。MATLAB人脸识别程序的使用界面上分为三个按钮:“测试准确率”“选择照片”和“图像匹配”,既可以方便操作,又可以使识别结果直观地显示出来。点击“开始运行”按钮调用的是主函数face.m, 对人脸数据进行处理; 点击“选择照片”按钮调用子函数GUl open, 用户可以在相应的文件路径下选择人脸照片; 点击“人脸识别”按钮调用子函数GUI reg, 通过每张图片所对应的标签来进行匹配, 从而得出识别结果。

3 PCA-SⅤM人脸识别模型的建立
3.1人脸库构建
人脸识别模型的建立首先需要适当的人脸库。本文分两步构建人脸库。
(1) 选择OR L人脸数据库加入本文人脸库, 其中包含40个人的每人10张人脸图片, 一共400张图片, 每张大小是112×92像素, 图片格式是pgm。
(2) 作者利用电脑摄像头拍了10张本人的照片, 将这10张图片的格式转化为pgm格式, 同时大小也转化为112×92像素,加入本文人脸库。
3.2训练集数据处理
这里将每个人的前5张人脸图片作为训练集,后5张人脸图片作为测试集。训练集数据处理步骤如下:
(1) 读入训练集数据, 储存在矩阵f_matrix(205*10304) 中。
(2) 对训练集数据进行PC A降维, 本文选择的降维维数是100。
(3)规范化特征数据,将同一个样本中的不同维度归一化,从而对于不同的属性之间也可以进行比较。
这里特别增加了一个显示特征脸的步骤。由于数据降至100维,在低维空间中的基就是100张特征脸,其他所有经过降维的脸都可以通过这100张特征脸线性表示。图1显示了前10个特征脸。
在这里插入图片描述
图1 特征脸显示
3.3 参数选择
在PCA-SVM人脸识别模型建立中, 参数取值如下:
(1) n persons:样本包含41个人的人脸, 将n persons设置为41。
(2)flag:flag为0时子函数ReadFace.m读取训练样本数据, flag为1时读取测试样本数据。
(3) k:表示降维至k维。该参数在子函数fast PC A.m中以输入参数出现, 在后面的SVM训练中也有用处。k值与gamma值有很大关联, 这里经过反复调整将k设置为100。
(4) low vec:经过降维后的图像数据pc a face的最小值, 通过设置low new,即新的边界的下限,对数据进行归一化处理。
(5) up vec:经过降维后的图像数据pc a face的最大值, 通过设置up new, 即新的边界的上限, 对数据进行归一化处理。
(6)核函数:本文选择的是高斯核函数。
(7) gamma:参数gamma是选择高斯核函数RBF作为核函数后该函数自带的一个参数。它隐含地决定了数据映射到新的特征空间后的分布。gamma越大, 支持向量越少, 反之支持向量越多。支持向量的个数直接影响到训练与预测的速度。gamma如果设置得很大, 会使得高斯分布显得高而窄,只作用于支持向量样本附近,对于未知样本的分类效果很差,最终会导致训练准确率很高,而识别准确率很低的结果,即过拟合。而gamma设置过小, 则会造成平滑效应过大, 对于噪声不敏感。本文设置参数gamma时, 在10-3~103的范围依次尝试,最终设置为0.01。
(8)c:参数c可以理解为惩罚参数,类似于正则化中一的作用。c越大,意味着拟合非线性的能力越强,但是容易入出现过拟合的情况,而c过小会导致出现欠拟合的情况,总而言之,c过大或者过小,泛化能力都会变差。本文设置参数c为1。

4 PCA-SⅤM人脸识别模型的测试
测试时,首先读取测试数据,类似于处理训练数据,需要对测试数据进行降维和归一化处理,然后利用训练所得的模型对测试数据集进行分类识别。将识别结果与本身自带的标签(即这是第几个人的人脸图片)进行比对,可以获得识别准确率。测试结果表明, 基于PCA-SVM的人脸识别方法准确率为83.9024%。这里选取第8个人的人脸图片作为示例,可以看到在最终的人脸识别阶段可以准确地进行人脸识别。
备注:简介部分仅作为理论参考,无本文程序和运行结果略有出入。

二、部分源代码

function varargout = face(varargin)
% FACE MATLAB code for face.fig
%      FACE, by itself, creates a new FACE or raises the existing
%      singleton*.
%
%      H = FACE returns the handle to a new FACE or the handle to
%      the existing singleton*.
%
%      FACE('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in FACE.M with the given input arguments.
%
%      FACE('Property','Value',...) creates a new FACE or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before face_OpeningFcn gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to face_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help face

% Last Modified by GUIDE v2.5 18-Dec-2014 12:02:18

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @face_OpeningFcn, ...
                   'gui_OutputFcn',  @face_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before face is made visible.
function face_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to face (see VARARGIN)

% Choose default command line output for face
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes face wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = face_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;


% --- Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton1 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% read image to be recognize
global im;
[filename, pathname] = uigetfile({'*.bmp'},'choose photo');
str = [pathname, filename];
im = imread(str);
axes( handles.axes1);
imshow(im);


% --- Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton2 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

global im
global reference
global W
global imgmean
global col_of_data
global pathname
global img_path_list

% 预处理新数据
im = double(im(:));
objectone = W'*(im - imgmean);
distance = 100000000;

% 最小距离法,寻找和待识别图片最为接近的训练图片
for k = 1:col_of_data
    temp = norm(objectone - reference(:,k));
    if(distance>temp)
        aimone = k;
        distance = temp;
        aimpath = strcat(pathname, '/', img_path_list(aimone).name);
        axes( handles.axes2 )
        imshow(aimpath)
    end
end

% 显示测试结果
% aimpath = strcat(pathname, '/', img_path_list(aimone).name);
% axes( handles.axes2 )
% imshow(aimpath)


% --- Executes on button press in pushbutton3.
function pushbutton3_Callback(hObject, eventdata, handles)
% hObject    handle to pushbutton3 (see GCBO)
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

三、运行结果

在这里插入图片描述

四、matlab版本及参考文献

1 matlab版本
2014a

2 参考文献
[1] 蔡利梅.MATLAB图像处理——理论、算法与实例分析[M].清华大学出版社,2020.
[2]杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].清华大学出版社,2013.
[3]周品.MATLAB图像处理与图形用户界面设计[M].清华大学出版社,2013.
[4]刘成龙.精通MATLAB图像处理[M].清华大学出版社,2015.
[5]孟逸凡,柳益君.基于PCA-SVM的人脸识别方法研究[J].科技视界. 2021,(07)
[6]张娜,刘坤,韩美林,陈晨.一种基于PCA和LDA融合的人脸识别算法研究[J].电子测量技术. 2020,43(13)
[7]陈艳.基于BP神经网络的人脸识别方法分析[J].信息与电脑(理论版). 2020,32(23)
[8]戴骊融,陈万米,郭盛.基于肤色模型和SURF算法的人脸识别研究[J].工业控制计算机. 2014,27(02)

文章来源: qq912100926.blog.csdn.net,作者:海神之光,版权归原作者所有,如需转载,请联系作者。

原文链接:qq912100926.blog.csdn.net/article/details/115922268

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。