常见归一化方法小结

举报
Yan 发表于 2022/05/26 08:52:45 2022/05/26
【摘要】 在各种模型训练,特征选择相关的算法中,大量涉及到数据归一化的问题。比如最常见的情况是计算距离,如果不同维度之间的取值范围不一样,比如feature1的取值范围是[100,200],feature2的取值范围是[1,2],如果数据不做归一化处理,会造成feature1在距离计算中占压倒性的优势,feature2完全体现不出来作用。而数据做归一化处理以后,会让各个不同特征对距离计算的贡献大致相同...

在各种模型训练,特征选择相关的算法中,大量涉及到数据归一化的问题。比如最常见的情况是计算距离,如果不同维度之间的取值范围不一样,比如feature1的取值范围是[100,200],feature2的取值范围是[1,2],如果数据不做归一化处理,会造成feature1在距离计算中占压倒性的优势,feature2完全体现不出来作用。而数据做归一化处理以后,会让各个不同特征对距离计算的贡献大致相同,从而避免人为的数据倾斜。

常见的数据归一化方式如下:

1.min-max归一化

如果要把输入数据转换到[0,1]的范围,可以用如下公式进行计算:

X n o r m = X X m i n X m a x X m i n X_{norm} = \frac{X - X_{min}}{X_{max} - X_{min}}

按以上方式进行归一化以后,输入数据转换到[0,1]的范围。
有时候我们希望将输入转换到[-1,1]的范围,可以使用以下的公式

X n o r m = 2 ( X X m i n ) X m a x X m i n 1 X_{norm} = \frac{2*(X - X_{min})}{X_{max} - X_{min}} - 1

以上两种方式,都是针对原始数据做等比例的缩放。其中 X n o r m X_{norm} 是归一化以后的数据, X X 是 原始数据大小, X m a x X_{max} X m i n X_{min} 分别是原始数据的最大值与最小值。公式简单明了,很容易懂。

除了将数据缩放到[0,1]或[-1,1]的范围,实际中还经常有其他缩放需求。例如在进行图像处理的过程中,获得的灰度图像的灰度值在[0,255]之间。常用的处理方式之一就是将像素值除以255,就缩放到了[0,1]之间。而在RGB图像转灰度图像的过程中,经常就将灰度值限定在[0,255]之间。

2. z-score归一化

z-score均值归一化将输入的原始数据集归一化为均值为0,方差为1的数据集。具体的归一化公式如下:

z = x μ σ z = \frac{x - \mu}{\sigma}

其中, μ \mu , σ \sigma 是原始 数据集的均值与标准差。这种方式要求原始数据集的分布近似为正态(高斯)分布。否则归一化的效果很差。

关于z-score均值归一化的专业描述如下:

特征标准化指的是(独立地)使得数据的每一个维度具有零均值和单位方差。这是归一化中最常见的方法并被广泛地使用(例如,在使用支持向量机(SVM)时,特征标准化常被建议用作预处理的一部分)。在实际应用中,特征标准化的具体做法是:首先计算每一个维度上数据的均值(使用全体数据计算),之后在每一个维度上都减去该均值。下一步便是在数据的每一维度上除以该维度上数据的标准差。

例子:处理音频数据时,常用 Mel 倒频系数 MFCCs 来表征数据。然而MFCC特征的第一个分量(表示直流分量)数值太大,常常会掩盖其他分量。这种情况下,为了平衡各个分量的影响,通常对特征的每个分量独立地使用标准化处理。

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。