二十四、MapReduce工作机制

举报
托马斯-酷涛 发表于 2022/05/26 00:21:22 2022/05/26
【摘要】 MapReduce概述: 1 、MapReduce定义          Mapredude是一个分布式运算程序的编程框架,是用户开发"  基于Hadoop 的数据分析应用"    的核心框架。     &nbs...

MapReduce概述:

1 、MapReduce定义

         Mapredude是一个分布式运算程序的编程框架,是用户开发"  基于Hadoop 的数据分析应用"    的核心框架。

        MapReduce的核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。

2、 MapReduce优缺点

优点:

(1)MapReduce易于编程

        它简单的实现一些接口,就可以完成一个分布式程序,这个分布式程序可以分布到大量廉价的PC机器上运行。也就是说你写一个分布式程序,跟写一个简单的串行程序是一模一样的。就是因为这个特点使MapReduce编程变得非常流行。

(2)良好的扩展性

        当你的计算资源不能得到满足的时候,你可以通过简单的增加机器来扩展它的计算能力。

(3)高容错性

        MapReduce设计的初衷就是使程序物多部署在廉价的PC机器上,这就要求它具有很高的容错性。比如其中一台机器挂了,它可以把上面的计算任务转移到另外一个节点上运行,不至于这个任务运行失败,而且这个过程不需要人工参与,而完全是由Hadoop内部完成的。  

(4)适合PB级以上海量数据的离线处理

        可以实现上千台服务器集群并发工作,提供数据处理能力。

缺点:

(1)不擅长实时计算

        MapReduce无法像MysQL一样,在毫秒或者秒级内返回结里。2.不拉长流式计算

(2)不擅长流式计算

        流式计算的输入数据是动态的,而MapReduce的输入数据集是静态的,不能动态变化。这是因为MapReduce自身的设计特点决定了数据源必须是静态的。

(3)不擅长DAG(有向图)计算

        多个应用程序存在依赖关系,后一个应用程序的输入为前一个的输出。在这种情况下,MapReduce并不是不能做,而是使用后,每个MapReduce作业的输出结果都会写入到磁盘,会造成大量的磁盘IO,导致性能非常的低下。

MapReduce核心思想:

1)分布式的运算程序往往需要分成至少2个阶段。

2)第一个阶段的MapTask并发实例,完全并行运行,互不相干。

3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出。

4)MapReduce编程模型只能包含一个Map阶段和一个Reduce阶段,如果用户的业务逻辑非常复杂,那就只能多个MapReduce程序,串行运行。

总结:分析WordCount数据流走向深入理解MapReduce核心思想。

MapReduce进程:

 一个完整的MapReduce程序在分布式运行时有三类实例进程:

1)MrAppMaster:负责整个程序的过程调度及状态协调。

 2) MapTask:负责Map阶段的整个数据处理流程。

3) ReluceTask:负责Reduce阶段的整个数居处理流程。

官方WordCount源码:

        采用反编译工具反编译源码,发现WordCount案例有Map类、Reduce类和驱动类。且数据的类型是Hadoop自身封装的序列化类型。        

常用数据序列化类型:

Java类型

Hadoop Writable类型

boolean

BooleanWritable

byte

ByteWritable

int

IntWritable

float

FloatWritable

long

LongWritable

double

DoubleWritable

String

Text

map

MapWritable

array

ArrayWritable

 MapReduce编程规范:

        用户编写的程序分成三个部分:Mapper、Reducer和Driver。

1. Mapper阶段

(1)用户自定义的Mapper要佳承自己的父类

(2)Mapper的输入数据是KV对的形式(KV的类型可自定义)

(3) Mapper中的业务逻辑写在map()方法中

(4) Mapper日的输出教据是KV对的形式(KV的类型可自定义)

(5) map()方法(Map Taski进程)对每一个<K,V>调用一次


2.Reducer阶段

(1)用户自定义的Reducer要继承自己的父类

(2) Reducer的输入数据类型对应Mapper的输出数据类型,也是KV

(3) Reducer的业务逻辑写在reduce()方法中

(4) ReduceTask进程对每一组相同k的<k,v>组调用一次reduce()方法

3.Driver阶段
        相当于YARN集群的客户端,用于提交我们整个程序到YARN集群,提交的是封装了MapReduce程序相关运行参数的job对象
 

文章来源: tuomasi.blog.csdn.net,作者:托马斯-酷涛,版权归原作者所有,如需转载,请联系作者。

原文链接:tuomasi.blog.csdn.net/article/details/119949854

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。