【大数据】HBase分布式数据库架构及原理

举报
橙子园 发表于 2022/05/26 00:22:33 2022/05/26
【摘要】 文章目录 一、HBase的整体架构1、Client客户端2、ZooKeeper集群3、HMaster4、HRegionServer5、Region 1. HBase的数据存储原理...

一、HBase的整体架构

1、Client客户端

Client是操作HBase集群的入口,对于管理类的操作,如表的增、删、改操纵,Client通过RPC与HMaster通信完成,对于表数据的读写操作,Client通过RPC与RegionServer交互,读写数据。
Client类型:

  • HBase shell
  • Java编程接口
  • Thrift、Avro、Rest等等
2、ZooKeeper集群

作用:
1、实现了HMaster的高可用,多HMaster间进行主备选举
2、保存了HBase的元数据信息meta表,提供了HBase表中region的寻址入口的线索数据
3、对HMaster和HRegionServer实现了监控

3、HMaster

HBase集群也是主从架构,HMaster是主的角色,主要负责Table表和Region的相关管理工作,管理Client对Table的增删改的操作,在Region分裂后,负责新Region分配到指定的HRegionServer上,管理HRegionServer间的负载均衡,迁移region分布。当HRegionServer宕机后,负责其上的region的迁移。

4、HRegionServer

HBase集群中从的角色,作用为响应客户端的读写数据请求、负责管理一系列的Region、切分在运行过程中变大的region。

5、Region

HBase集群中分布式存储的最小单元,一个Region对应一个Table表的部分数据。

如下为HBase的整体架构图:
在这里插入图片描述

1. HBase的数据存储原理

  • 一个HRegionServer会负责管理很多个region,一个region包含很多个store,一个列族就划分成一个store
    ( 如果一个表中只有1个列族,那么这个表的每一个region中只有一个store,如果一个表中有N个列族,那么这个表的每一个region中有N个store)
  • 一个store里面只有一个memstore,memstore是一块内存区域,写入的数据会先写入memstore进行缓冲,然后再把数据刷到磁盘。
  • 一个store里面有很多个StoreFile, 最后数据是以很多个HFile这种数据结构的文件保存在HDFS上。StoreFile是HFile的抽象对象,如果说到StoreFile就等于HFile。每次memstore刷写数据到磁盘,就生成对应的一个新的HFile文件出来。
    在这里插入图片描述
    在这里插入图片描述

2. HBase读数据流程

在这里插入图片描述

说明:HBase集群,只有一张meta表,此表只有一个region,该region数据保存在一个HRegionServer上

  • 1、客户端首先与zk进行连接;
    • 从zk找到meta表的region位置,即meta表的数据存储在某一HRegionServer上;
    • 客户端与此HRegionServer建立连接,然后读取meta表中的数据;meta表中存储了所有用户表的region信息,我们可以通过scan 'hbase:meta'来查看meta表信息
  • 2、根据要查询的namespace、表名和rowkey信息。找到写入数据对应的region信息
  • 3、找到这个region对应的regionServer,然后发送请求
  • 4、查找并定位到对应的region
  • 5、先从memstore查找数据,如果没有,再从BlockCache上读取
    • HBase上Regionserver的内存分为两个部分
      • 一部分作为Memstore,主要用来写;
      • 另外一部分作为BlockCache,主要用于读数据;
  • 6、如果BlockCache中也没有找到,再到StoreFile上进行读取
    • 从storeFile中读取到数据之后,不是直接把结果数据返回给客户端,而是把数据先写入到BlockCache中,目的是为了加快后续的查询;然后再返回结果给客户端。

3. HBase写数据流程

1、客户端首先从zk找到meta表的region位置,然后读取meta表中的数据,meta表中存储了用户表的region信息
2、根据namespace、表名和rowkey信息。找到写入数据对应的region信息
3、找到这个region对应的regionServer,然后发送请求
4、把数据分别写到HLog(write ahead log)和memstore各一份
5、memstore达到阈值后把数据刷到磁盘,生成storeFile文件
6、删除HLog中的历史数据

HLog(write ahead log):也称为WAL意为Write ahead log,类似mysql中的binlog,用来做灾难恢复时用,HLog记录数据的所有变更,一旦数据修改,就可以从log中进行恢复。

4. HBase的flush、compact机制

在这里插入图片描述

4.1 Flush触发条件

4.1.1 memstore级别限制
  • 当Region中任意一个MemStore的大小达到了上限(hbase.hregion.memstore.flush.size,默认128MB),会触发Memstore刷新。
<property>
   <name>hbase.hregion.memstore.flush.size</name>
   <value>134217728</value>
</property>

  
 
  • 1
  • 2
  • 3
  • 4
4.1.2 region级别限制

当Region中所有Memstore的大小总和达到了上限(hbase.hregion.memstore.block.multiplier * hbase.hregion.memstore.flush.size,默认 2* 128M = 256M),会触发memstore刷新。

<property>
	<name>hbase.hregion.memstore.flush.size</name>
	<value>134217728</value>
</property>
<property>
	<name>hbase.hregion.memstore.block.multiplier</name>
	<value>4</value>
</property>   

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
4.1.3 Region Server级别限制
  • 当一个Region Server中所有Memstore的大小总和超过低水位阈值hbase.regionserver.global.memstore.size.lower.limit*hbase.regionserver.global.memstore.size(前者默认值0.95),RegionServer开始强制flush;
  • 先Flush Memstore最大的Region,再执行次大的,依次执行;
  • 如写入速度大于flush写出的速度,导致总MemStore大小超过高水位阈值hbase.regionserver.global.memstore.size(默认为JVM内存的40%),此时RegionServer会阻塞更新并强制执行flush,直到总MemStore大小低于低水位阈值
<property>
	<name>hbase.regionserver.global.memstore.size.lower.limit</name>
	<value>0.95</value>
</property>
<property>
	<name>hbase.regionserver.global.memstore.size</name>
	<value>0.4</value>
</property>

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
4.1.4 HLog数量上限

当一个Region Server中HLog数量达到上限(可通过参数hbase.regionserver.maxlogs配置)时,系统会选取最早的一个 HLog对应的一个或多个Region进行flush

4.1.5 定期刷新Memstore

默认周期为1小时,确保Memstore不会长时间没有持久化。为避免所有的MemStore在同一时间都进行flush导致的问题,定期的flush操作有20000左右的随机延时。

4.1.6 手动flush

用户可以通过shell命令flush ‘tablename’或者flush ‘region name’分别对一个表或者一个Region进行flush。

4.2 flush的流程

  • 为了减少flush过程对读写的影响,将整个flush过程分为三个阶段:
    • prepare阶段:遍历当前Region中所有的Memstore,将Memstore中当前数据集CellSkipListSet做一个快照snapshot;然后再新建一个CellSkipListSet。后期写入的数据都会写入新的CellSkipListSet中。prepare阶段需要加一把updateLock对写请求阻塞,结束之后会释放该锁。因为此阶段没有任何费时操作,因此持锁时间很短。

    • flush阶段:遍历所有Memstore,将prepare阶段生成的snapshot持久化为临时文件,临时文件会统一放到目录.tmp下。这个过程因为涉及到磁盘IO操作,因此相对比较耗时。

    • commit阶段:遍历所有Memstore,将flush阶段生成的临时文件移到指定的ColumnFamily目录下,针对HFile生成对应的storefile和Reader,把storefile添加到HStore的storefiles列表中,最后再清空prepare阶段生成的snapshot。

4.3 Compact合并机制

  • hbase为了防止小文件过多,以保证查询效率,hbase需要在必要的时候将这些小的store file合并成相对较大的store file,这个过程就称之为compaction。

  • 在hbase中主要存在两种类型的compaction合并

    • minor compaction 小合并
    • major compaction 大合并

4.3.1 minor compaction 小合并

在将Store中多个HFile合并为一个HFile,在这个过程中会选取一些小的、相邻的StoreFile将他们合并成一个更大的StoreFile,对于超过了TTL的数据、更新的数据、删除的数据仅仅只是做了标记。并没有进行物理删除,一次Minor Compaction的结果是更少并且更大的StoreFile。这种合并的触发频率很高。
minor compaction触发条件由以下几个参数共同决定:

<!--默认值3;表示一个store中至少有4个store file时,会触发minor compaction-->
<property>
	<name>hbase.hstore.compactionThreshold</name>
	<value>3</value>
</property>

<!--默认值10;表示一次minor compaction中最多合并10个store file-->
<property>
	<name>hbase.hstore.compaction.max</name>
	<value>10</value>
</property>

<!--默认值为128m;表示store file文件大小小于该值时,一定会加入到minor compaction的-->
<property>
	<name>hbase.hstore.compaction.min.size</name>
	<value>134217728</value>
</property>

<!--默认值为LONG.MAX_VALUE;表示store file文件大小大于该值时,一定会被minor compaction排除-->
<property>
	<name>hbase.hstore.compaction.max.size</name>
	<value>9223372036854775807</value>
</property>

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23

4.3.2 major compaction 大合并

合并Store中所有的HFile为一个HFile,将所有的StoreFile合并成一个StoreFile,这个过程还会清理三类无意义数据:被删除的数据、TTL过期数据、版本号超过设定版本号的数据。合并频率比较低,默认7天执行一次,并且性能消耗非常大,建议生产关闭(设置为0),在应用空闲时间手动触发。一般可以是手动控制进行合并,防止出现在业务高峰期。

major compaction触发时间条件

<!--默认值为7天进行一次大合并,-->
<property>
	<name>hbase.hregion.majorcompaction</name>
	<value>604800000</value>
</property>

  
 
  • 1
  • 2
  • 3
  • 4
  • 5

手动触发

##使用major_compact命令
major_compact tableName

  
 
  • 1
  • 2

5. HBase表的预分区

当一个table刚被创建的时候,Hbase默认的分配一个region给table。也就是说这个时候,所有的读写请求都会访问到同一个regionServer的同一个region中,这个时候就达不到负载均衡的效果了,集群中的其他regionServer就可能会处于比较空闲的状态。
解决这个问题可以用pre-splitting,在创建table的时候就配置好,生成多个region。

5.1 预分区意义

  • 增加数据读写效率
  • 负载均衡,防止数据倾斜
  • 方便集群容灾调度region
  • 优化Map数量,当要对HBase数据进行分析操作时,可以通过它来优化map数量,即一个region对应一个maptask。

5.2 预分区原理

  • 每一个region维护着startRow与endRowKey,如果加入的数据符合某个region维护的rowKey范围,则该数据交给这个region维护。

5.3 手动指定预分区

方式一:直接创建时使用数组指定

create 'person','info1','info2',SPLITS => ['1000','2000','3000','4000']

  
 
  • 1

方式二:也可以把分区规则创建于文件中

cd /book/install
vim prepart.txt

  
 
  • 1
  • 2

文件内容

aaa
bbb
ccc
ddd

  
 
  • 1
  • 2
  • 3
  • 4

hbase shell中,执行命令

create 'student','info',SPLITS_FILE => '/book/install/prepart.txt'

  
 
  • 1

方式三: HexStringSplit 算法
HexStringSplit会将数据从“00000000”到“FFFFFFFF”之间的数据长度按照n等分之后算出每一段的起始rowkey和结束rowkey,以此作为拆分点。

如:

create 'mytable', 'base_info',' extra_info', {NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}

  
 
  • 1

文章来源: blog.csdn.net,作者:橙子园,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/Chenftli/article/details/122724563

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。