机器学习实战应用案例100篇(二十一)-蚁群算法从原理到实战应用案例

举报
格图洛书 发表于 2022/05/24 23:46:46 2022/05/24
【摘要】 蚁群算法(原理) 1 算法简介 优化问题在科学和工业领域都非常重要。这些优化问题的实际例子有时间表调度、护理时间分配调度、列车调度、容量规划、旅行商问题、车辆路径问题、群店调度问题、组合优化等。为此,开发了许多优化算法。蚁群优化就是其中之一。 蚁群优化(Ant colony optimization,ACO))是一种寻找&nbsp...

蚁群算法(原理)

1 算法简介

优化问题在科学和工业领域都非常重要。这些优化问题的实际例子有时间表调度、护理时间分配调度、列车调度、容量规划、旅行商问题、车辆路径问题、群店调度问题、组合优化等。为此,开发了许多优化算法。蚁群优化就是其中之一。

蚁群优化(Ant colony optimization,ACO))是一种寻找 最优路径 的 概率 技术。在计算机科学和研究中,蚁群优化算法被用于解决不同的计算问题。

蚁群优化算法(Ant colony optimization, ACO)最早由Marco Dorigo在90年代的博士论文中提出。该算法是根据蚂蚁的觅食行为来寻找蚁群与源食物之间的路径。最初,它被用来解决著名的旅行推销员问题。后来,它被用于解决各种困难的优化问题。

蚂蚁是群居的昆虫。他们生活在殖民地。蚂蚁的行为受 寻找食物 目标的控制。

  1. 在 搜寻的过程 中,蚂蚁们会在它们的聚居地四处游荡。蚂蚁 反复 地从一个地方跳到另一个地方去寻找食物。

  2. 在 移动过程 中,它会在地面上沉积一种叫做 信息素 (pheromone) 的有机化合物。蚂蚁通过信息素痕迹相互交流。当蚂蚁找到一些食物时,它会尽可能多地携带。

  3. 当它 返回 时,它会根据食物的数量和质量在路径上 沉积信息素。蚂蚁能闻到信息素。所以,其他蚂蚁可以闻到,然后沿着那条路走。

  4. 信息素 水平 越高

文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。

原文链接:wenyusuran.blog.csdn.net/article/details/123677316

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。