【Python应用实战】线性回归(附Python代码)
【摘要】
线性回归
①相关分析:一个连续变量与一个连续变量间的关系。
②双样本t检验:一个二分分类变量与一个连续变量间的关系。
③方差分析:一个多分类分类变量与一个连续变量间的关系。
④卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。
本次介绍:
线性回归:多个连续变量与一个连...
线性回归
①相关分析:一个连续变量与一个连续变量间的关系。
②双样本t检验:一个二分分类变量与一个连续变量间的关系。
③方差分析:一个多分类分类变量与一个连续变量间的关系。
④卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。
本次介绍:
线性回归:多个连续变量与一个连续变量间的关系。
其中线性回归分为简单线性回归和多元线性回归。
/ 01 / 数据分析与数据挖掘
数据库:一个存储数据的工具。因为Python是内存计算,难以处理几十G的数据,所以有时数据清洗需在数据库中进行。
统计学:针对小数据的数据分析方法,比如对数据抽样、描述性分析、结果检验。
人工智能/机器学习/模式识别:神经网络算法,模仿人类神经系统运作,不仅可以通过训练数据进行学习,而且还能根据学习的结果对未知的数据进行预测。
/ 02 / 回归方程
01 简单线性回归
简单线性回归只有一个自变量与一个因变量。
</
文章来源: wenyusuran.blog.csdn.net,作者:文宇肃然,版权归原作者所有,如需转载,请联系作者。
原文链接:wenyusuran.blog.csdn.net/article/details/123544244
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)