【读书会第12期】这是一份”又大“、”又细“、“又深”的java类加载原理图解

举报
breakDawn 发表于 2022/05/15 17:32:20 2022/05/15
【摘要】 假期借着华为云读书会的活动,重读了一遍《深入理解java虚拟机》, 发现第一遍读“类加载”相关内容的时候,只关注了最笼统的类加载步骤,对于其中的细节部分没有深入探究,觉得那些东西肯定用不到。 其实他们背后的原理,和我们平时运行进程时的各种报错息息相关。 另外如果能理解类加载,也能够对“如何把代码在运行时关联起来”又更深的理解。

【读书会第十二期】
假期借着华为云读书会的活动,重读了一遍《深入理解java虚拟机》, 发现第一遍读“类加载”相关内容的时候,只关注了最笼统的类加载步骤,对于其中的细节部分没有深入探究,觉得那些东西肯定用不到。
其实他们背后的原理,和我们平时运行进程时的各种报错息息相关。
另外如果能理解类加载,也能够对“如何把代码在运行时关联起来”又更深的理解。

看来经典书籍要多读多总结,是有道理的。
于是在阅读这个章节时,用processorOn做了一副超大的类加载过程解析图,方便自己通过浏览这个图能马上回忆起class文件的结构以及内部的指令。
下面的内容是拆分后的内容,对于每块拆分的内容,会有详细的解释。
对于完整大图,我放在文末,需要收藏的可以自取 ,欢迎关注一下我的华为云社区账号或者社区读书会活动。
欢迎点击该链接报名参加读书会,一起成长学习和交流!
报名链接

重要:学习这个章节之前,最好先学习class文件原理图解,因为二者的内容息息相关。


好了下面我们开始,文章内容较长,建议收藏一下分时段阅读。


关于类初始化的时机和误区

书籍的第一步部分上来就先讲了类初始化的时机,整理成图片如下:
image.png
看起来非常多,很难记住,很折磨。

个人认为,书籍把这一部分放到章节的最前面不太合理,曾经一度让我把上面的这些事件,理解成了类加载的时机,也不懂这些规则的缘由(根本原因还是此时读者对类加载的理解不够深。)

先贴一下类加载和类初始化的区别:

  • 类加载概念:将class文件加载到jvm中并生成class对象,并根据情况做初始化。
  • 类初始化概念:调用类class文件中默认存在的<cinit>类初始化方法。

而我们容易产生误解的原因,是因为书中没有这句话::所谓的类初始化时机,只是针对cinit类初始化方法的调用,并不是指的类加载时机!

以上图中红色的部分为例:
image.png
这里书籍中没有解释这3个规则的原因,在没理解原理前,强行记忆这3条是没有任何意义的。我认为是作者的失误。

在这里我挑其中一个做补充:
“使用类里的static final 常量,不会触发初始化”
想要理解这个规则,需要先理解class文件原理。
对于类的static final常量字段,它的常量值是存放在字段的constanValue属性中。
image.png
正因为如此,static final常量并不需要通过cinit方法中的指令来完成赋值。
所以也就没有必要在这时候调用<cinit>方法了。

因此对于“儿子类调用父类的静态成员,不用对儿子类做类初始化”也是一个道理,儿子类的类静态成员没有被使用到,没必要做cinit。

对于上面的分析,可以浓缩为一句话:
“如果我们急需使用static成员,且这个成员的值是要通过cinit方法赋值的,那么我们才做cinit初始化”

新的疑问:那为什么仅仅是new一个对象时,也一定要做cinit类初始化呢?
假设此时我还没用到static成员,那么new一个对象时,是否可以省去cinit,等用到静态成员的时候,再去触发cinit?

这涉及到了类初始化的另一个容易被忽视的点:“cinit类初始化方法,并不仅仅是做类成员的赋值,其实还可能包含一些初始化行为调用”,这可以是资源的启动或者加载等类对象必须要用到的内容。

因此在一切可能触发类对象实际行为前,必须触发cinit避免出错。

所以刚才的长篇大论,可以再次进行优化,浓缩为:
“当需要用到static成员的初始赋值,或者对类对象进行正式使用时,才会触发cinit类初始化,目的是为了保证类对象或者类成员的正确使用”
拿着这一句话,去回看前面的类初始化时机的触发时机和不触发的时机时,相信你就会有更深的理解了,甚至也不需要强行去记忆每一条规则了。


有误导的“加载三部曲”

有一个很经典的回答,叫做类加载三部曲:加载、连接、初始化
好像类加载过程就是这三步按照顺序串行拼装起来的。

实际上这3个过程是存在交叉的!
只能说,“最早发生”的时机,是按照这个顺序发生,但是中间加载过程是有很多的,具体后面会结合我画的图以及原理解释进行呈现。

加载:不仅仅是读取字节流

image.png
对于加载,很容易只理解成只是“从文件里加载二进制字节到内存”。
这个过程显然是必须最先执行的,否则连类的基本信息都获取不到。
image.png
可以看到这个过程很灵活,只要你从你能想到的地方拿到字节流即可,任意形式都行。

然而,对于“加载”,除了获取字节流,实际上还包含了“把字节流转成方法区里的数据结构,进行存储defineClass”、“生成一个class对象,存储在堆中”这两步。

这2步是穿插在连接过程中的。
比如字节流转数据结构的过程,必须在确认字节流的正确性之后完成。
而生成class对象同理,符合一个class对象的条件时,才能将其在堆中生成。
image.png
image.png


连接

连接过程可以说是最难记住的一个过程, 里面包含了各种校验啊之类的,让人摸不清头脑。这里会通过更细致的解释和图解,让你明白连接过程究竟做了什么。
首先连接过程分为 验证、准备和解析,“解析”并不是连接的最后一步,而是在验证过程中实时发生的!。 下文会为你详细解释为什么。

验证

文件格式校验(class文件对不对)

image.png
注意这里的校验,都是一些最简单的校验,相当于无需做太多的语法分析操作等操作, 都是基于class文件格式定义进行的基础校验。

然而如果对加载的文件有充分的自信,来源可靠,那么确实可以省去这个步骤,提升连接效率,因此会有一个-Xverify:none的选项供使用。

元数据验证(我的父亲对不对)

这里验证了class文件里面继承特性相关的重要信息,例如继承关系是否合理、是否实现了抽象类或接口的方法
image.png

注意,这个元数据验证的过程,会触发父类或者接口的解析(加载)操作!
书上提到了4个解析情况以及流程:

  • 类解析
  • 字段解析
  • 类方法解析
  • 接口方法解析
    却没有解释这4个解析过程是在哪里发生的。后面我会逐一提到,来真正理解这4个解析过程。

元数据验证中的类解析

还记得class文件中,父类是指向一个constant_class_info吗?这个东西当时看就是一个utf字符串,没什么意义。你没法知道父类究竟有什么方法,是不是抽象类。
因此必须拿到父类的类信息,要么是已经在方法区中,要么需要重新加载。
而类解析的过程如下:
image.png
可以看到这个过程中也会发生加载,甚至好多次加载。


字节码验证(我的指令对不对)

image.png
这个验证不要和前面的“文件格式验证”搞混了。
前面的“元数据验证”都只是针对类、方法、字段等和父类进行确认、校验。
但是还没有涉及到每个方法里的code属性。

code属性虽然在编译出来时是正确的,但是无法保证传输过程中被人篡改。
如果发生操作操作数栈时,栈里没东西,或者试图在局部变量表边界外写入局部变量,就可能导致不可估量的后果。

因此此刻会进行最基本的指令分析,确认对操作数栈、局部变量表的操作是安全、正确的。

但是,逐个指令分析,会不会太慢了?如果代码很长的话。

还记得class文件的code属性中,还包含了一个stackMapTable属性么,估计很多人都跳过了这个属性。
image.png
这个属性就是用在字节码验证这个过程,可以立即让编译器编译出class时,提前把各位置的情况写入stackMap中,jvm加载时只对这个stackMap做校验确认是对的即可。
但代价就是可能不安全了,因为这个stackMap是可以被篡改的。

符号引用验证(我的指令调用的目标对不对)

注意前面的“字节码验证”是简单的确认,但不会持有过多的其他类的信息。
但是方法肯定会涉及对其他类的调用。

image.png

此时就会涉及到符号引用验证,确认自己是否拥有对方方法的访问权限。
那么你就需要找到目标类的类信息存放地址,确认方法权限,或者字段权限。
于是会在这里触发字段解析、类方法解析或者接口解析!
image.png
书上只提到了这3个解析过程的流程,却没有详细解释其中的一些缘由,我会做更详细的补充。

符号引用验证中的字段解析

class中的constant_filed_info终于露出了它的真面目,原来是用在这个地方,即和字段相关的指令会用到它,并通过字段符号引用, 解析到这个字段真正的定义位置。
image.png
像经常遇到的NoSuchFieldError报错,就是在这个过程中爆出来的。
而且接口字段的优先级是大于父类的字段的。

符号引用验证中的类方法解析

当调用方法前,需要先确认对象方法是否有权限访问。那么就必须这个类的信息进行确认。
注意:这个过程并不是动态分派的那个过程,此刻并没有触发任何的方法调用!仅仅是确认代码中静态类型的访问权限是否正确之类的!
image.png

  • 对类方法做解析的时候,会判断此时是类还是接口。如果是接口,竟然会报“IncompatibleClassChangeError”。
  • 还有如果是抽象类,也会报“AbstractMethodError”,因为正常情况下,你的jvm指令调用的方法,必须是实例化的对象所对应的方法,不可能直接调用抽象类方法的。

符号引用验证中的接口方法解析

看起来像是将类方法解析中的接口和方法互换了位置。
image.png

疑问1:为什么接口方法还要解析?接口不是没有代码吗?
因为接口类里每个interface方法,本身也是一个方法,只不过没有详细的code属性。但方法的访问修饰符之类的都存在,因此验证阶段还是需要进行校验。

疑问2:为什么要区分类的方法和接口方法?不能用同一种思路去解析么?
我理解的几个原因:

  1. 向上搜索时的逻辑不同,对于类方法,直接找父类即可, 而接口则需要遍历所有父接口。而且类方法还要考虑抽象类的问题,接口不需要。
  2. 类方法和接口方法本身就是两个不同的符号引用, 一个是constant_method_ref,另一个是constant_interface_ref,用2套逻辑没什么毛病
  3. 如果硬要问为什么要区分这2个符号引用,明明内容都是类索引+描述符索引?
    这是因为后面在实际调用方法时,二者有显著区别,具体见下文的“方法表的准备”。

准备

image.png

类静态成员默认值的准备

对于准备阶段,大家一般只记得需要对一些非final的类静态成员做默认初始值操作。

方法表的准备

除了这个默认值赋值,还有一个动作,是准备方法表。
方法表就是为了多态而生,简化动态分派时频繁的迭代循环带来的不必要消耗:
image.png
通过前面的验证过程,我们已经获知了父类信息。
因此可以准备一个方法表,把父类方法堆到最前面,自己的方法堆到后面,后面直接根据索引获取方法调用地址即可!

重要问题:interface的接口方法,会有方法表吗?
intefacer接口是不具有方法表的!
因此这可能也是jvm特地区分了class_inteface_info和class_method_info这2个常量,以及特地用invoke_inteface和invoke_virtual指令来区分2类方法的调用。因为他们的调用逻辑可能大相径庭。

为什么接口不能有方法表?

这是由于Java可以实现多个接口,不同的类可能会实现了多个或者不同的接口,在虚表里该接口所实现方法的索引会不一致。

假设有A、B、C三个接口类

  • 类X实现了A、B两个接口,假设A和B接口放在虚表里,那么调用A接口方法我们假设它是在t位置。
  • 类T实现了B、C、A接口,按照实现顺序,先放B的方法,再放A的方法,最后放C的方法。这样调用接口A时,就不一定是t位置了,我们无法直接确定A里面方法的位置,因为一个类可以实现多个接口,而且顺序可以随意更改!

这样每次解析的虚表索引都可能会不同,因此不能进行缓存,需要每次都进行重新的解析。
因此,接口的方法调用会比普通的子类继承的虚函数调用要慢。

解析

解析其实分为“静态解析”和“动态解析”。
因此将解析说成是“连接”中的一部分是不严谨的, 只有静态解析,才是“连接”的一部分。
静态解析用于解析私有方法、父类构造器、final方法等不存在多态可能的方法。
image.png

而动态解析则会在类加载的范围外去使用。

初始化

cinit方法细节解析

image.png
关于初始化时机的解释,在开头就已经阐述过了,这里不再重复解释。

疑问1:cinit方法中的代码是如何生成的?
cinit方法 是编译器收集所有类静态变量的赋值动作和静态语句块static{}中的语句合并产生,按照顺序收集。
因此类加载赋值的顺序和类定义顺序有关,原理就取决于cinit生成的原理。

疑问2:cinit类初始化是线程安全的吗?
是线程安全的,虚拟机会保证一个类的加载和cinit方法会被正确的加锁、同步。
因此多线程场景下,同时使用一个之前没初始化过的类,且类初始化过程耗时非常久的话, 且可能会造成线程阻塞。
而这也是可以利用类初始化+内部类的方式,来做单例模式的实现的原理:

初始化中的动态解析

而初始化过程中,可能会涉及其他对象实例方法的调用,因此是可能发生动态解析过程的!
类方法和接口方法的解析过程如下
类方法的解析可以借助虚方法表简化解析过程。
image.png

扩展:invoke_dynamic是什么

对于invoke_dynamic指令做什么的?涉及动态分派、类加载和解析吗?

我们首先看下invoke_dynamic指令调用的dynamic_info常量长什么样的:
image.png
可以看到它只包含了一个方法索引和描述,但似乎没包含方法属于哪个类。

它的作用是用java实现一些类似于脚本语言的逻辑,脚本语言不关心静态类型,不做编译检查,只关心运行期的内容。所以invoke_dynamic以及constant_dynamic_info应运而生。但书本和工作中对这块的接触都不是太深,因此我的理解也只能局限于此了。


最后的完整大图

好累,终于写完了,感觉能看到最后的人不会太多,但一通详细地分析和解决中间发现的问题,还是收获了不少。
最后贴上完整的大图,欢迎保存和收藏。
图解笔记系列也会持续更新下去,争取做全网最细又最大的java分享文章。如果感觉不错,欢迎扫描文末的二维码,参加社区的活动并抽奖!
在线地址
https://www.processon.com/view/link/5e7eed6ce4b0ffc4ad43fda8

完整大图
image.png

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。