全网最全极限学习机(ELM)及其变种的开源代码分享

举报
府学路18号车神 发表于 2022/05/11 15:27:41 2022/05/11
【摘要】 分享一个小技巧,浅浅分享一下极限学习机及其变种的开源代码,需要的小伙伴下面自取呀~@TOC 基本 ELM 算法 MATLAB版基本ELM的 MATLAB 代码(带有随机生成的隐藏节点、随机神经元),这些随机隐藏节点包括 sigmoid、RBF、傅里叶级数等。http://www.extreme-learning-machines.org/elm_random_hidden_nodes.htm...

分享一个小技巧,浅浅分享一下极限学习机及其变种的开源代码,需要的小伙伴下面自取呀~

@TOC

基本 ELM 算法

MATLAB版

基本ELM的 MATLAB 代码(带有随机生成的隐藏节点、随机神经元),这些随机隐藏节点包括 sigmoid、RBF、傅里叶级数等。

内核的 ELM 资源(用于回归和多类分类)

OS-ELM 的源代码

C/C++版

感谢意大利鲁昂大学的Vladislavs Dovgalecs对 C/C++ 版本的 ELM 的善意贡献

Python版

感谢 A. Akusok, K. Bjork、Y. Miche 和 A. Lendasse 对 ELM 的 Python 版本的善意贡献可以在下面

感谢David Lambert对 ELM 的 Python 版本的善意贡献,可以从这个 ELM 门户网站

简要描述算法和代码链接的博客条目

Java版

感谢李东为 ELM 的 Java 版本提供了帮助,可以从这个 ELM 门户网站

多层/分层 ELM

MNIST OCR 的多层 ELM

L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, “Representational Learning with Extreme Learning Machine for Big Data,” IEEE Intelligent Systems, vol. 28, no. 6, pp. 31-34, December 2013.

Hierarchical ELM (分层ELM)

Jiexiong Tang, Chenwei Deng, and Guang-Bin Huang, “Extreme Learning Machine for Multilayer Perceptron,” (accepted by)IEEE Transactions on Neural Networks and Learning Systems, 2015.

其他 ELM变种的 相关源代码

3D 图形形状

Z. Xie, K. Xu, W. Shan, L. Liu, Y. Xiong, and H. Huang, “Projective Feature Learning for 3D Shapes with Multi-View Depth Images,” Pacific Graphics, vol. 24, no. 7, 2015

高性能极限学习机

A. Akusok, K. Bjork, Y. Miche, and A. Lendasse, “High-Performance Extreme Learning Machines: A Complete Toolbox for Big Data Applications,” IEEE Open Access, vol. 3, 2015

蛋白质和基因组分析

C. Savojardo, P. Fariselli, and R. Casadio, “BETAWARE: a machine-learning tool to detect and predict transmembrane beta barrel proteins in Prokaryotes,” Bioinformatics, Jan 13 2013. [source-codes link: BETAWARE] (for protein and genome analysis)

BODIPY荧光染料的电子激发能预测

J.-N. Wang, J.-L. Jin, Y. Geng, S.-L. Sun, H.-L. Xu, Y.-H. Lu and Z.-M. Su, “An accurate and efficient method to predict the electronic excitation energies of BODIPY fluorescent dyes,” Journal of Computational Chemistry, vol. 34, no. 7, pp. 566-575, 2013 [Free Online Web Service:EEEBPre -ELM based prediction of electronic excitation energies for BODIPY dyes, which is freely accessible to public at the web site: http://202.198.129.218, has been built for prediction by the authors. This web server can return the predicted electronic excitation energy values of BODIPY dyes that are high consistent with the experimental values. The authors hope that this web server would be helpful to theoretical and experimental chemists in related research.]

不平衡数据集的加权 ELM

W. Zong, G.-B. Huang, and Y. Chen, “Weighted extreme learning machine for imbalance learning,” Neurocomputing, vol. 101, pp. 229-242, 2013.

双向极限学习机

Y. Yang, Y. Wang, and X. Yuan, “Bidirectional extreme learning machine for regression problem and its learning effectiveness,” IEEE Transactions on Neural Networks and Learning Systems, Vol. 23, pp. 1498 - 1505, 2012

自适应进化极限学习机

J. Cao, Z. Lin, and G.-B. Huang, “Self-adaptive evolutionary extreme learning machine,” Neural Processing Letters, vol. 36, pp. 285-305, 2012.

完全复杂的极限学习机

M.-B. Li, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “Fully Complex Extreme Learning Machine,” Neurocomputing, vol. 68, pp. 306-314, 2005.

在线顺序 ELM

N.-Y. Liang, G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A Fast and Accurate On-line Sequential Learning Algorithm for Feedforward Networks," IEEE Transactions on Neural Networks, vol. 17, no. 6, pp. 1411-1423, 2006

集群 ELM

G. Huang, S. Song, J. N. D. Gupta, and C. Wu, “Semi-supervised and Unsupervised Extreme Learning Machines,” (in press) IEEE Transactions on Cybernetics, 2014.

Reference

http://www.extreme-learning-machines.org/

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。