【POJ2559】Largest Rectangle in a Histogram(单调栈)

举报
小哈里 发表于 2022/05/10 23:29:02 2022/05/10
【摘要】 problem 给你一堆宽度为1,高度不同的矩形条。问你能框出一个最大矩形面积为多少。 solution 如果矩形高度递增,那么答案为每个元素最多能向右扩展多少。如果矩形高度比上一个小,那么该矩形与...

problem

  • 给你一堆宽度为1,高度不同的矩形条。
  • 问你能框出一个最大矩形面积为多少。

solution

  • 如果矩形高度递增,那么答案为每个元素最多能向右扩展多少。
  • 如果矩形高度比上一个小,那么该矩形与之前的矩形构成新矩形时,之前矩形比他高的地方就用不到了,同时之前比他高的矩形也没办法和更右边的矩形构成更大的新矩形,所以它没有用处了。我们不妨删掉它,用一个高度为当前矩形高度,宽度累加的新矩形代替他。
  • 这样对于每个矩形:如果比栈顶高就直接进栈。如果比栈顶低就不断取出栈顶,在出站过程中累计宽度,每弹出一个矩形就用他的高度乘以当前宽度(即它的右边界)去更新答案。最后把整个宽度作为新的当前高度的矩形加入栈中。
  • 时间复杂度为O(N),借助单调栈处理问题的思想在于及时排除不可能的选项,保持策略集合的高度有效性和秩序性。

codes

#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 1e5+10;
int n, a[maxn], s[maxn], w[maxn];
int main(){
    while(cin>>n &&n){
        LL ans = 0, p = 0;
        for(int i = 1; i <= n; i++)
            scanf("%d",&a[i]);
        a[n+1] = 0;
        for(int i = 1; i <= n+1; i++){
            if(a[i]>s[p])s[++p]= a[i], w[p] = 1;
            else {
                int width = 0;
                while(s[p]>a[i]){
                    width += w[p];
                    ans = max(ans, (LL)width*s[p]);
                    p--;
                }
                s[++p] = a[i], w[p] = width+1;
            }
        }
        cout<<ans<<'\n';
    }
    return 0;
}

文章来源: gwj1314.blog.csdn.net,作者:小哈里,版权归原作者所有,如需转载,请联系作者。

原文链接:gwj1314.blog.csdn.net/article/details/81513728

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。