【CSP201312-3】最大的矩形,单调栈
problem
201312-3
试题名称: 最大的矩形
时间限制: 1.0s
内存限制: 256.0MB
问题描述:
问题描述
在横轴上放了n个相邻的矩形,每个矩形的宽度是1,而第i(1 ≤ i ≤ n)个矩形的高度是hi。这n个矩形构成了一个直方图。例如,下图中六个矩形的高度就分别是3, 1, 6, 5, 2, 3。
请找出能放在给定直方图里面积最大的矩形,它的边要与坐标轴平行。对于上面给出的例子,最大矩形如下图所示的阴影部分,面积是10。
输入格式
第一行包含一个整数n,即矩形的数量(1 ≤ n ≤ 1000)。
第二行包含n 个整数h1, h2, … , hn,相邻的数之间由空格分隔。(1 ≤ hi ≤ 10000)。hi是第i个矩形的高度。
输出格式
输出一行,包含一个整数,即给定直方图内的最大矩形的面积。
样例输入
6
3 1 6 5 2 3
样例输出
10
solution
我就说好像在哪写过,出门右拐POJ2559,2018年的原题代码一字不改丢上去AC。。。
虽然现在未必能写的出单调栈,,我知道自己越学越菜系列。。。
但是CSP可以带模板和书进去啊啊啊什么鬼。。。。
https://gwj1314.blog.csdn.net/article/details/81513728
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long LL;
const int maxn = 1e5+10;
int n, a[maxn], s[maxn], w[maxn];
int main(){
while(cin>>n &&n){
LL ans = 0, p = 0;
for(int i = 1; i <= n; i++)
scanf("%d",&a[i]);
a[n+1] = 0;
for(int i = 1; i <= n+1; i++){
if(a[i]>s[p])s[++p]= a[i], w[p] = 1;
else {
int width = 0;
while(s[p]>a[i]){
width += w[p];
ans = max(ans, (LL)width*s[p]);
p--;
}
s[++p] = a[i], w[p] = width+1;
}
}
cout<<ans<<'\n';
}
return 0;
}
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
文章来源: gwj1314.blog.csdn.net,作者:小哈里,版权归原作者所有,如需转载,请联系作者。
原文链接:gwj1314.blog.csdn.net/article/details/107984795
- 点赞
- 收藏
- 关注作者
评论(0)