【读书会第十二期】 《深入理解Java虚拟机》第5章Java内存模型与线程
Java存储器模型的首要目标就是为程序中的各种变数设定一个存取规则,也就是将变数存入虚拟机上,以及从记忆体中提取变数。这里的变量不同于 Java编程中的变量,包含实例字段,静态字段,以及组成阵列对象的元素,但不包含本地变量和方法参数。为了提高性能, Java存储器模型不会对执行引擎使用特定的寄存器或缓存与主机存储器进行交互,也不会对技术编译器进行修改的指令进行限制。
Java的记忆体模式将所有的变量都储存在主要记忆体(这里的主要记忆体就像是实体硬件中的主要记忆体,两者可以相仿,但是实际上,这只是虚拟机记忆体的一部分)。每个线程都有自己的工作记忆体(工作记忆,类似于处理器快取),线程的工作记忆体存储着执行绪所用的变数的主要记忆体,执行绪对变数的一切动作(读取、赋值等)都必须在工作记忆体中完成,无法直接写入主记忆体。线程间的可变数据传输必须经过主内存,线程、主内存和工作内存三者的相互关系如下图:
原子性、可见性与有序性
1、原子性(Atomicity)
由Java内存模型来直接保证原子性的变量操作包包括read、load、assign、use、store和write这六个,我们大致认为,基本数据类型的访问、读写都是具备原子性的。如果应用场景需要一个更大范围的原子性保证,Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作。这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。
2、可见性(Visibility)
可见性就是值当一个线程修改了共享变量的值时,其他线程能够立即得知这个修改。除了volatile关键字之外,Java还有两个关键字能实现可见性,他们是synchronized和final。同步块的可见性是由“对一个变量执行unlock之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的。而final关键字的可见性是指:被final修饰的字段在构造器中一旦被初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那么在其他线程中就能看见final字段的值。
3、有序性
Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内似表现为串行的语义”(Within-Thread As-If-Serial Semantic),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象。
Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这个规则决定了只有同步一个锁的两个同步块只能串行进入。
线程的实现
我们知道,线程是比进程更轻量级的调度执行单位,线程的引入,可以把一个进程的资源分配和执行调度分开,各个线程既可以共享进程资源(内存地址、文件I/O等),又可以独立调度。目前线程是Java里面进行处理器资源调度的最基本单位,不过如果日后Loom项目能成功为Java引入纤程 (Fiber)的话,可能就会改变这一点。
主流的操作系统都提供了线程实现,Java语言则提供了在不同硬件和操作系统平台下对线程操作的统一处理,每个已经调用过start()方法且还未结束的java.lang.Thread类的实例就代表着一个线程。我们注意到Thread类与大部分的Java类库API有着显著差别,它的所有关键方法都被声明为Native。在 Java类库API中,一个Native方法往往就意味着这个方法没有使用或无法使用平台无关的手段来实现(当然也可能是为了执行效率而使用Native方法,不过通常最高效率的手段也就是平台相关的手段)。正因为这个原因,本节的标题被定为“线程的实现”而不是“Java线程的实现”,在稍后介绍的实现方式中,我们也先把Java的技术背景放下,以一个通用的应用程序的角度来看看线程是如何实现的。
实现线程主要有三种方式:使用内核线程实现(1:1实现),使用用户线程实现(1:N实现), 使用用户线程加轻量级进程混合实现(N:M实现)。
1.内核线程实现
使用内核线程实现的方式也被称为1:1实现。内核线程(Kernel-Level Thread,KLT)就是直接由操作系统内核(Kernel,下称内核)支持的线程,这种线程由内核来完成线程切换,内核通过操纵调度器(Scheduler)对线程进行调度,并负责将线程的任务映射到各个处理器上。每个内核线程可以视为内核的一个分身,这样操作系统就有能力同时处理多件事情,支持多线程的内核就称为多线程内核 (Multi-Threads Kernel)。
程序一般不会直接使用内核线程,而是使用内核线程的一种高级接口——轻量级进程(Light Weight Process,LWP),轻量级进程就是我们通常意义上所讲的线程,由于每个轻量级进程都由一个内核线程支持,因此只有先支持内核线程,才能有轻量级进程。这种轻量级进程与内核线程之间1:1 的关系称为一对一的线程模型,如下图所示。
由于内核线程的支持,每个轻量级进程都成为一个独立的调度单元,即使其中某一个轻量级进程在系统调用中被阻塞了,也不会影响整个进程继续工作。轻量级进程也具有它的局限性:首先,由于是基于内核线程实现的,所以各种线程操作,如创建、析构及同步,都需要进行系统调用。而系统调用的代价相对较高,需要在用户态(User Mode)和内核态(Kernel Mode)中来回切换。其次,每个轻量级进程都需要有一个内核线程的支持,因此轻量级进程要消耗一定的内核资源(如内核线程的栈空间),因此一个系统支持轻量级进程的数量是有限的。
2.用户线程实现
使用用户线程实现的方式被称为1:N实现。广义上来讲,一个线程只要不是内核线程,都可以认为是用户线程(User Thread,UT)的一种,因此从这个定义上看,轻量级进程也属于用户线程,但轻量级进程的实现始终是建立在内核之上的,许多操作都要进行系统调用,因此效率会受到限制,并不具备通常意义上的用户线程的优点。
而狭义上的用户线程指的是完全建立在用户空间的线程库上,系统内核不能感知到用户线程的存在及如何实现的。用户线程的建立、同步、销毁和调度完全在用户态中完成,不需要内核的帮助。如果程序实现得当,这种线程不需要切换到内核态,因此操作可以是非常快速且低消耗的,也能够支持规模更大的线程数量,部分高性能数据库中的多线程就是由用户线程实现的。这种进程与用户线程之间1:N的关系称为一对多的线程模型,如上图所示。
用户线程的优势在于不需要系统内核支援,劣势也在于没有系统内核的支援,所有的线程操作都需要由用户程序自己去处理。线程的创建、销毁、切换和调度都是用户必须考虑的问题,而且由于操作系统只把处理器资源分配到进程,那诸如“阻塞如何处理”“多处理器系统中如何将线程映射到其他处理器上”这类问题解决起来将会异常困难,甚至有些是不可能实现的。因为使用用户线程实现的程序通常都比较复杂[1],除了有明确的需求外(譬如以前在不支持多线程的操作系统中的多线程程序、需要支持大规模线程数量的应用),一般的应用程序都不倾向使用用户线程。Java、Ruby等语言都曾经使用过用户线程,最终又都放弃了使用它。但是近年来许多新的、以高并发为卖点的编程语言又普遍支持了用户线程,譬如Golang、Erlang等,使得用户线程的使用率有所回升。
3.混合实现
线程除了依赖内核线程实现和完全由用户程序自己实现之外,还有一种将内核线程与用户线程一起使用的实现方式,被称为N:M实现。在这种混合实现下,既存在用户线程,也存在轻量级进程。用户线程还是完全建立在用户空间中,因此用户线程的创建、切换、析构等操作依然廉价,并且可以支持大规模的用户线程并发。而操作系统支持的轻量级进程则作为用户线程和内核线程之间的桥梁,这样可以使用内核提供的线程调度功能及处理器映射,并且用户线程的系统调用要通过轻量级进程来完成,这大大降低了整个进程被完全阻塞的风险。在这种混合模式中,用户线程与轻量级进程的数量比是不定的,是N:M的关系,如下图所示,这种就是多对多的线程模型。
许多UNIX系列的操作系统,如Solaris、HP-UX等都提供了M:N的线程模型实现。在这些操作系统上的应用也相对更容易应用M:N的线程模型。
Java线程调度
协同式线程调度
主动切换
抢占式线程调度系统
分配时间片
状态转换
Java语言定义了6种线程状态,在任意一个时间点中,一个线程只能有且只有其中的一种状态,并且可以通过特定的方法在不同状态之间转换。这6种状态分别是:
- 新建(New):创建后尚未启动的线程处于这种状态。
- 运行(Runnable):包括操作系统线程状态中的Running和Ready,也就是处于此状态的线程有可能正在执行,也有可能正在等待着操作系统为它分配执行时间。
- 无限期等待(Waiting):处于这种状态的线程不会被分配处理器执行时间,它们要等待被其他线程显式唤醒。以下方法会让线程陷入无限期的等待状态:
■没有设置Timeout参数的Object::wait()方法;
■没有设置Timeout参数的Thread::join()方法;
■LockSupport::park()方法。 - 限期等待(TimedWaiting):处于这种状态的线程也不会被分配处理器执行时间,不过无须等待被其他线程显式唤醒,在一定时间之后它们会由系统自动唤醒。以下方法会让线程进入限期等待状态:
■Thread::sleep()方法;
■设置了Timeout参数的Object::wait()方法;
■设置了Timeout参数的Thread::join()方法;
■LockSupport::parkNanos()方法;
■LockSupport::parkUntil()方法。 - 阻塞(Blocked):线程被阻塞了,“阻塞状态”与“等待状态”的区别是“阻塞状态”在等待着获取到一个排它锁,这个事件将在另外一个线程放弃这个锁的时候发生;而“等待状态”则是在等待一段时间,或者唤醒动作的发生。在程序等待进入同步区域的时候,线程将进入这种状态。
- 结束(Terminated):已终止线程的线程状态,线程已经结束执行。
上述6种状态在遇到特定事件发生的时候将会互相转换,它们的转换关系如下图所示。
- 点赞
- 收藏
- 关注作者
评论(0)