【Dive into Deep Learning / 动手学深度学习】第二章 - 第三节:线性代数

举报
海轰Pro 发表于 2022/05/05 22:03:36 2022/05/05
【摘要】 目录 前言2.3. 线性代数2.3.7. 点积(Dot Product)2.3.8. 矩阵-向量积2.3.9. 矩阵-矩阵乘法2.3.10. 范数 结语 前言 Hello! ...

前言

Hello!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
 
自我介绍 ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,获得过国家奖学金,有幸在竞赛中拿过一些国奖、省奖…已保研。
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
 
唯有努力💪
 

知其然 知其所以然!

 
本文仅记录自己感兴趣的内容

2.3. 线性代数

2.3.7. 点积(Dot Product)

torch.dot(x, y)

x = torch.arange(4, dtype=torch.float32)
y = torch.ones(4, dtype = torch.float32)
x, y, torch.dot(x, y)

  
 
  • 1
  • 2
  • 3

在这里插入图片描述

2.3.8. 矩阵-向量积

torch.mv(A, x)

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
x = torch.arange(4, dtype=torch.float32)
A.shape, x.shape, torch.mv(A, x)

  
 
  • 1
  • 2
  • 3

在这里插入图片描述

2.3.9. 矩阵-矩阵乘法

torch.mm(A, B)

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = torch.ones(4, 3)
A, B, torch.mm(A, B)

  
 
  • 1
  • 2
  • 3

在这里插入图片描述

2.3.10. 范数

非正式地说,一个向量的范数告诉我们一个向量有多大。 这里考虑的大小(size)概念不涉及维度,而是分量的大小。

在线性代数中,向量范数是将向量映射到标量的函数f。

u = torch.tensor([3.0, -4.0])
torch.norm(u)

  
 
  • 1
  • 2

在这里插入图片描述

torch.norm()

在这里插入图片描述

结语

学习资料:http://zh.d2l.ai/

文章仅作为个人学习笔记记录,记录从0到1的一个过程

希望对您有一点点帮助,如有错误欢迎小伙伴指正

在这里插入图片描述

文章来源: haihong.blog.csdn.net,作者:海轰Pro,版权归原作者所有,如需转载,请联系作者。

原文链接:haihong.blog.csdn.net/article/details/124531994

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。