电阻立方体网络

举报
tsinghuazhuoqing 发表于 2022/05/05 00:27:29 2022/05/05
【摘要】   时不常会看到这样的电阻网络问题, 虽然没有实际应用,但令人琢磨起来还是蛮有意思的。 下面是12个10k欧姆的电阻焊接成电阻立方体网络。 问题是求A-H 之间的电阻。 ▲ 图1 电阻立方体网络 ...

  时不常会看到这样的电阻网络问题, 虽然没有实际应用,但令人琢磨起来还是蛮有意思的。 下面是12个10k欧姆的电阻焊接成电阻立方体网络。 问题是求A-H 之间的电阻。

▲ 图1 电阻立方体网络

▲ 图1 电阻立方体网络

  当所有的电阻都相同的时候, 如果在A,H 两端施加电压, 那么D,E,C,F 这四个点都应该是A,H之间的中间电位, 所以连接在C,D 以及E,F 之间的电阻可以是省略。 电路则可以简化成下面右边的形式。

▲ 图2 电阻网络等效电路

▲ 图2 电阻网络等效电路

  不难分析, 最终A-H 之间的电阻应该是单个电阻的四分之三。 如果单个电阻为10kΩ,那么A-H 之间的电阻为应该是7.5kΩ。

  实际上,这个电阻网络总共有八个顶点, 任意两者之间都存在阻抗。 如果询问那两点的阻抗最大, 估计大多数人都会承认,应该是立方体的对角线,比如A-G , 之间的电阻最大。 那么A-G 之间的电阻有多大呢?

  Don Cross 在他的博客 Cubical Resistor Network 对于这个问题进行了讨论。他假设在立方体对角线施加1V 激励电压, 通过分析格点之间的对称性和等效电阻, 最终他得到立方体对角线的电阻等于单个电阻的六分之五。

▲ 图3 电阻网络立方体等效电路

▲ 图3 电阻网络立方体等效电路

  有趣的是,他还使用了实际电阻进行了测试, 并且测量出网络中所有节点之间的电阻。

▲ 图4 实际电阻网络

▲ 图4 实际电阻网络

  经过测量, 可以看到整个网络各节点之间的电阻总共分为三类:

  • 对角线: 电阻大约为 5/6 R;
  • 同面对角线:电阻大约为 3/4 R;
  • 相邻: 电阻大约 3/5 R

▲ 图5 电阻网络各点之间的实测电阻

▲ 图5 电阻网络各点之间的实测电阻

  估计上述电阻网络等效电阻计算还是可以心算出来的, 在 Infinite 2D square grid of 1 Ω 1\Omega 1Ω resistors 中给出了一个询问无穷范围中的二维电阻网络中,两个对角线之间的电阻问题。

▲ 图6 无穷范围中的二维电阻网络

▲ 图6 无穷范围中的二维电阻网络

  求解的方法中居然还是用到傅里叶变换 的公式, 这一点的确让我破防了。 上述无穷二维电阻网络中,对角线节点之间的电阻居然是 2 / π    Ω 2/\pi \,\,\Omega 2/πΩ

▲ 图7 奇异的电路图

▲ 图7 奇异的电路图


■ 相关文献链接:

● 相关图表链接:

文章来源: zhuoqing.blog.csdn.net,作者:卓晴,版权归原作者所有,如需转载,请联系作者。

原文链接:zhuoqing.blog.csdn.net/article/details/124546367

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。