【人工智能】机器学习之Python使用KNN算法进行电影类型预测以及使用KNN算法对鸢尾花进行分类

举报
南蓬幽 发表于 2022/04/22 10:30:30 2022/04/22
【摘要】 1. 使用KNN进行电影类型预测: 给定训练样本集合如下:求解:testData={“老友记”: [29, 10, 2, “?片”]}。解题步骤:1.计算一个新样本与数据集中所有数据的距离2.按照距离大小进行递增排序3.选取距离最小的k个样本4.确定前k个样本所在类别出现的频率,并输出出现频率最高的类别import numpy as npdef createDataset(): ''...

1. 使用KNN进行电影类型预测:

给定训练样本集合如下:

在这里插入图片描述
求解:testData={“老友记”: [29, 10, 2, “?片”]}。

解题步骤:
1.计算一个新样本与数据集中所有数据的距离
2.按照距离大小进行递增排序
3.选取距离最小的k个样本
4.确定前k个样本所在类别出现的频率,并输出出现频率最高的类别

import numpy as np


def createDataset():
    '''
    创建训练集,特征值分别为搞笑镜头、拥抱镜头、打斗镜头的数量
    '''
    learning_dataset = {"宝贝当家": [45, 2, 9, "喜剧片"],
              "美人鱼": [21, 17, 5, "喜剧片"],
              "澳门风云3": [54, 9, 11, "喜剧片"],
              "功夫熊猫3": [39, 0, 31, "喜剧片"],
              "谍影重重": [5, 2, 57, "动作片"],
              "叶问3": [3, 2, 65, "动作片"],
              "伦敦陷落": [2, 3, 55, "动作片"],
              "我的特工爷爷": [6, 4, 21, "动作片"],
              "奔爱": [7, 46, 4, "爱情片"],
              "夜孔雀": [9, 39, 8, "爱情片"],
              "代理情人": [9, 38, 2, "爱情片"],
              "新步步惊心": [8, 34, 17, "爱情片"]}
    return learning_dataset


def kNN(learning_dataset,dataPoint,k):
    '''
    kNN算法,返回k个邻居的类别和得到的测试数据的类别
    '''
    # s1:计算一个新样本与数据集中所有数据的距离
    disList=[]
    for key,v in learning_dataset.items():
       #对距离进行平方和开根号
       d=np.linalg.norm(np.array(v[:3])-np.array(dataPoint))
       #round四舍五入保留两位小数,并添加到集合中
       disList.append([key,round(d,2)])

    # s2:按照距离大小进行递增排序
    disList.sort(key=lambda dis: dis[1]) # 常规排序方法,熟悉key的作用
    # s3:选取距离最小的k个样本
    disList=disList[:k]
    # s4:确定前k个样本所在类别出现的频率,并输出出现频率最高的类别
    labels = {"喜剧片":0,"动作片":0,"爱情片":0}
    #从k个中进行统计哪个类别标签最多
    for s in disList:  
        #取出对应标签
        label = learning_dataset[s[0]] 
        labels[label[len(label)-1]] += 1
    labels =sorted(labels.items(),key=lambda asd: asd[1],reverse=True)

    return labels,labels[0][0]


if __name__ == '__main__':

    learning_dataset=createDataset()
    testData={"老友记": [29, 10, 2, "?片"]}
    dataPoint=list(testData.values())[0][0:3]
    
    k=6
    labels,result=kNN(learning_dataset,dataPoint,k)
    print(labels,result,sep='\n')

在这里插入图片描述

结果为喜剧片!

2. 编写代码,实现对iris数据集的KNN算法分类及预测

要求:

(1)数据集划分为测试集占20%;
(2)n_neighbors=5;
(3)评价模型的准确率;
(4)使用模型预测未知种类的鸢尾花。
(待预测数据:X1=[[1.5 , 3 , 5.8 , 2.2], [6.2 , 2.9 , 4.3 , 1.3]])

iris数据集有150组,每组4个数据。

第一步:引入所需库

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np

第二步:划分测试集占20%

 x_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0)

test_size为0-1的数代表占百分之几
random_state为零随机数确定,每次结果都相同

第三步:n_neighbors=5

 KNeighborsClassifier(n_neighbors=5)

第四步:评价模型的准确率

KNN.fit(x_train, y_train)
# 训练集准确率
train_score = KNN.score(x_train, y_train)
# 测试集准确率
test_score = KNN.score(x_test, y_test)

第五步:使用模型预测未知种类的鸢尾花

#待预测数据:X1=[[1.5 , 3 , 5.8 , 2.2], [6.2 , 2.9 , 4.3 , 1.3]]
 X1 = np.array([[1.5, 3, 5.8, 2.2], [6.2, 2.9, 4.3, 1.3]])
 # 进行预测
 prediction = KNN.predict(X1)
 # 种类名称
 k = iris.get("target_names")[prediction]

完整代码:

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
if __name__ == '__main__':
    iris = load_iris()
    data = iris.get("data")
    target = iris.get("target")
    x_train, x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0)
    KNN = KNeighborsClassifier(n_neighbors=5)
    KNN.fit(x_train, y_train)
    train_score = KNN.score(x_train, y_train)
    test_score = KNN.score(x_test, y_test)
    print("模型的准确率:", test_score)
    X1 = np.array([[1.5, 3, 5.8, 2.2], [6.2, 2.9, 4.3, 1.3]])
    prediction = KNN.predict(X1)
    k = iris.get("target_names")[prediction]
    print("第一朵花的种类为:", k[0])
    print("第二朵花的种类为:", k[1])

结果:
在这里插入图片描述

【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。