【人工智能】机器学习之用Python实现最小二乘法进行房价预测以及进行贷款额度预测
【摘要】 1.使用最小二乘法进行房价预测:给定训练样本集合如下:求解:当房屋面积为55平方时,租赁价格是多少?给出代码与运行结果图。首先明白什么是最小二乘法,利用最小二乘法公式p = (X^TX)^-1 X^T Yimport numpy as npfrom numpy import matimport matplotlib.pyplot as pltif __name__ == "__main__...
1.使用最小二乘法进行房价预测:
给定训练样本集合如下:
求解:当房屋面积为55平方时,租赁价格是多少?给出代码与运行结果图。
首先明白什么是最小二乘法,利用最小二乘法公式
p = (X^TX)^-1 X^T Y
import numpy as np
from numpy import mat
import matplotlib.pyplot as plt
if __name__ == "__main__":
# 1 获得x,y数据# ##########
X = np.array([10, 15, 20, 30, 50, 60, 60, 70])
y = np.array([0.8, 1, 1.8, 2, 3.2, 3, 3.3, 3.5])
plt.scatter(X, y)
plt.show()
# 2 矩阵形式转换X, Y
Y_mat = mat(y).T
# print(Y_mat)
X_temp = np.ones((8, 2))
#print(X_temp)
X_temp[:, 0] = X
# print(X_temp)
X_mat = mat(X_temp)
#print(X_mat)
# 3 利用解析法 p = (X^TX)^-1 X^T Y
pamaters = (((X_mat.T)*X_mat).I) * X_mat.T*Y_mat
¥print(pamaters)
# 4 显示
predict_Y = X_mat * pamaters
# print(predict_Y)
plt.figure()
plt.scatter(X, y, c="blue")
plt.plot(X, predict_Y, c="red")
plt.title("房价预测图") # 设置图表标题
plt.xlabel("房屋面积(m^2)") # 设置x坐标轴标签
plt.ylabel("租赁价格(1000$)") # 设置y坐标轴标签
plt.rcParams['font.sans-serif'] = ['Kaiti'] # 用来正常显示中文(黑体)常用字体包括: Kaiti-楷体; FangSong-仿宋; Microsoft YaHei-微软雅黑
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.show()
s = input("请输入房屋面积:")
#print(s)
s_temp = np.ones((1, 2))
s_temp[:, 0] = s
#print(s_temp)
s_mat = mat(s_temp)
z = s_mat * pamaters
print("租赁价格为:", z)
散点图和折线图
输入房屋面积即可得出租赁价格!
2. 使用最小二乘法进行贷款额度预测:
给定训练样本集合如下:
求解:当工资18000、年龄30时,额度是多少?给出代码与运行结果图
难点在于有两个参数
画三维图需要引入mpl_toolkits.mplot3d
最小二乘法公式不变
p = (X^TX)^-1 X^T Y
在画图时要分别为x,y,z轴赋值,并写上坐标标签,由于数据的小数位太多,超出位数范围会报错,所以要将小数变为整数!
import numpy as np
from numpy import mat
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D # 画三维图
if __name__ == "__main__":
# 1 获得x,y数据# ##########
X = np.array([[4000, 25], [8000, 30], [5000, 28], [7500, 33], [12000, 40]])
Y = np.array([20000, 70000, 35000, 50000, 85000])
# 2 矩阵形式转换X, Y
Y_mat = mat(Y).T
X_temp = np.ones((5, 3))
X_temp[:, 0] = X[:, 0]
X_temp[:, 1] = X[:, 1]
#print(X_temp)
X_mat = mat(X_temp)
# print(X_mat)
# 3 利用解析法 p = (X^TX)^-1 X^T Y
pamaters = (((X_mat.T) * X_mat).I) * X_mat.T * Y_mat
#print(pamaters)
# 4 显示
fig1 = plt.figure()
ax1 = Axes3D(fig1)
x = X[:, 0]
y = X[:, 1]
z = Y
Z = X_mat * pamaters
#print(Z)
n = list(map(int, Z[:, 0])) # Z中的数的位数超出范围
#print(n)
ax1.scatter3D(x, y, z, c='blue')
ax1.plot3D(x, y, n, c='red')
plt.title("贷款额度预测图") # 设置图表标题
plt.xlabel("工资") # 设置x坐标轴标签
plt.ylabel("年龄") # 设置y坐标轴标签
ax1.set_zlabel("额度")# 设置z坐标标签
plt.rcParams['font.sans-serif'] = ['Kaiti'] # 用来正常显示中文(黑体)常用字体包括: Kaiti-楷体; FangSong-仿宋; Microsoft YaHei-微软雅黑
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.show()
a = eval(input("请输入工资:"))
b = eval(input("请输入年龄: "))
s = np.array([[a, b]])
# print(s)
s_temp = np.ones((1, 3))
s_temp[:, 0] = s[:, 0]
s_temp[:, 1] = s[:, 1]
#print(s_temp)
s_mat = mat(s_temp)
m = s_mat * pamaters
print("贷款额度为:", m)
三维散点和折线图
输入工资和年龄即可输出贷款额度!
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)