迪杰斯特拉 (Dijkstra)算法求最短路径问题

举报
求不脱发 发表于 2022/04/21 21:22:09 2022/04/21
【摘要】 迪杰斯特拉( Dijkstra )算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

 目录

算法介绍

应用实例

算法步骤

代码实现



算法介绍

迪杰斯特拉( Dijkstra )算法是典型最短路径算法,用于计算一个结点到其他结点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

应用实例

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5rGC5LiN6ISx5Y-R,size_20,color_FFFFFF,t_70,g_se,x_16


算法步骤

1)设置出发顶点为 v ,顶点集合 VfvI ,v2, vi .), v 到 V 各顶点的距离构成距离集合 Dis , Dis ( dI ,d2, di .), Dis 集合记录着 v 到图中各顶点的距离(到自身可以看作0, v 到 vi 距离对应为 di )
2)从 Dis 中选择值最小的 di 并移出 Dis 集合,同时移出 V 集合中对应的项点 vi ,此时的 v 到 vi 即为最短路径
3)更新 Dis 集合,更新规则为:比较 v 到 V 集合中顶点的距离值,与 v 通过 vi 到 V 集合中顶点的距离值,保留
值较小的一个(同时也应该更新顶点的前驱节点为 vi ,表明是通过 vi 到达的)
4)重复执行两步骤,直到最短路径顶点为目标顶点即可结束。

代码实现


import java.util.Arrays;

public class _最短路{
	static int[] vis;//标记已经访问的顶点  0未访问 1 访问
	static int[] dis;//出发顶点到各个下标对应顶点的最短距离
	static int[] pre;//每个下标对应的上一个顶点下标
	static char[] vertex;//顶点
	static int[][] matrix;//邻接矩阵
	public static void main(String[] args) {
		vertex= new char[]{'A','B','C','D','E','F','G'};
		matrix = new int[vertex.length][vertex.length];
		chushihua(matrix);//初始化邻接矩阵
		djstl(vertex.length,6);//调用算法
	}
	public static void djstl(int length,int start) {
		vis=new int[length];
		dis=new int[length];
		pre=new int[length];
		Arrays.fill(dis, 9999);//初始化距离为较大值
		dis[start] = 0;//初始化出发顶点到自身的距离0
		
		/*  先将起始点到与其连通的顶点的路径及pre前一个顶点进行更新*/
		update(start);
		//在以与起始点相连的顶点为起点  更新距离和路径
		for (int i = 1; i < vertex.length; i++) {
			int minIndex = -1;
			int mindis=9999;
			//找到一个最短路径
			for (int j = 0; j < vertex.length; j++) {
				if(vis[j]==0 && dis[j] < mindis) {
					minIndex = j;
					mindis = dis[j];
				}
			}
			vis[minIndex] = 1;
			update(minIndex);//继续更新
		}
		
		System.out.println(Arrays.toString(dis));
	}
	/**
	 * 以index顶点向下查找!!!以起点start到index附近的邻接结点的最短路径!!!
	 * @param index
	 */
	public static void update(int index) {
		vis[index] = 1;//index标记为已访问
		int len= 0;//len:从start顶点到index顶点的距离+上从index再到i顶点的距离
		//循环遍历每个邻接结点顶点,找到真正意义上的最短路径
		for (int i = 0; i < matrix[index].length; i++) {
			//记录从start顶点到index顶点的距离+上从index再到i顶点的距离
			len = dis[index] + matrix[index][i];
			//将dis[i] 即从start直接到i 的距离 与len进行比较 
			if(vis[i] == 0 && len < dis[i]) {
				dis[i] = len;//更新最短路径
				pre[i] = index;//更新前置顶点
			}
		}
	}
	/**
	 * 初始化邻接矩阵
	 * @param matrix
	 */
	public static void chushihua(int[][] matrix) {
		final int N = 9999;
		matrix[0]=new int[]{N,5,7,N,N,N,2};
		matrix[1]=new int[]{5,N,N,9,N,N,3};
		matrix[2]=new int[]{7,N,N,N,8,N,N};
		matrix[3]=new int[]{N,9,N,N,N,4,N};
		matrix[4]=new int[]{N,N,8,N,N,5,4};
		matrix[5]=new int[]{N,N,N,4,5,N,6};
		matrix[6]=new int[]{2,3,N,N,4,6,N};
	}
}


【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。