01背包(dp)

举报
红目香薰 发表于 2022/04/20 20:03:19 2022/04/20
【摘要】 ​ 问题描述:有n 个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?解决这个题有两种方法,和其它的动态规划问题一样数组w[]为物品的重量,v[]为物品的价值一种是递归的思想,从后向前考虑,背包决定是否放一个物品是根据两个值的大小判断(一个值是背包没有放入这个物品的价值,另一个值是背包放入这个物品,另外背包容量减少物品重量的价值),去两个值中的最大...

 问题描述:

有n 个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和?

解决这个题有两种方法,和其它的动态规划问题一样

数组w[]为物品的重量,v[]为物品的价值

一种是递归的思想,从后向前考虑,背包决定是否放一个物品是根据两个值的大小判断(一个值是背包没有放入这个物品的价值,另一个值是背包放入这个物品,另外背包容量减少物品重量的价值),去两个值中的最大值,递归结束条件是物品放完或者是背包容量小于等于0。

dp

接下来就是动态规划的思想,动态规划是从前往后想

求这个背包问题首先要画一个表

横轴是容量,纵轴是物品id

求解问题的过程就是维护这个表的过程,求解的值,就是最后一个空格的值

首先对于第0号物品

容量为0时,由于自身重量为1,所以放不进去,所以空格填0,容量为1以后,该物品可以放进去了,就都为6

对于第1号物品

对于(2,1)这个位置,由于背包容量是2,所以我可以放1号物品,将0号物品拿出来,或者不放1号物品,判断两种情况下的最大值,是第一种情况。

对于(3,1)这个位置,背包容量为3,可以1,0两个物品都放,或者保持(2,1),结果两个都放是最大值。

对于第2号物品

(3,2)这个位置是(0,1)+2号物品的价值和(3,1)比大小,结果是(3,1)比较大,所以还是16

(4,2)这个位置是(1,1)+2号物品的价值和(4,1)比大小,结果是(1,1)+12大,所以为18

(5,2)这个位置是(2,1)+2号物品的价值和(5,1)比大小,结果是(2,1)+12大,所以为22

所以最后背包的最大值为22

package action;

public class demo {
	public static void main(String[] args) {
		int size = 5;
		int[] w = { 1, 2, 3 };
		int[] v = { 6, 10, 12 };
		System.out.println(backpack(w, v, size));
	}

	public static int backpack(int[] w, int[] v, int size) {
		if (w.length != v.length)
			return -1;

		int n = w.length;
		if (n == 0)
			return 0;
		int[][] memo1 = new int[n][size + 1];

		for (int i = 0; i <= size; i++) {
			memo1[0][i] = (i >= w[0] ? v[0] : 0);
		}
		for (int i = 1; i < n; i++) {
			for (int j = 0; j <= size; j++) {
				memo1[i][j] = memo1[i - 1][j];
				if (j >= w[i]) {
					memo1[i][j] = Math.max(memo1[i][j], v[i] + memo1[i - 1][j - w[i]]);
				}
			}
		}
		return memo1[n - 1][size];
	}
}


【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。