☆打卡算法☆LeetCode 105、从前序与中序遍历序列构造二叉树 算法解析
【摘要】 推荐阅读CSDN主页GitHub开源地址Unity3D插件分享简书地址我的个人博客QQ群:1040082875大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。 一、题目 1、算法题目“给定两个整数数组pre和ino,其中pre是二叉树的先序遍历,ino是二叉树的中序遍历,构造二叉树返回其根节点。”题目链接:来源...
推荐阅读
大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。
一、题目
1、算法题目
“给定两个整数数组pre和ino,其中pre是二叉树的先序遍历,ino是二叉树的中序遍历,构造二叉树返回其根节点。”
题目链接:
来源:力扣(LeetCode)
链接:105. 从前序与中序遍历序列构造二叉树 - 力扣(LeetCode) (leetcode-cn.com)
2、题目描述
给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。
示例 1:
输入: preorder = [3,9,20,15,7], inorder = [9,3,15,20,7]
输出: [3,9,20,null,null,15,7]
示例 2:
输入: preorder = [-1], inorder = [-1]
输出: [-1]
二、解题
1、思路分析
真是不停的被二叉树折磨,这道题是由两个整数数组,一个先序遍历一个中序遍历,构造出二叉树返回根节点。
首先来了解一下什么是先序遍历,什么是中序遍历。
先序遍历:
- 先遍历根节点
- 随后递归地遍历左子树
- 最后递归地遍历右子树
中序遍历:
- 先递归地遍历左子树
- 随后遍历根节点
- 最后递归地遍历右子树
根据先序遍历和中序遍历的性质,我们就可以得到本题的解题。
- 在中序遍历中定位到根节点,就可以知道左子树和右子树的节点数。
- 前序遍历跟中序遍历的长度是相同的,可以将中序遍历的结果对应到前序遍历的结果中
- 根据前序遍历和中序遍历的结果,以及右子树的前序遍历和中序遍历结果,我们就可以递归地构造出左子树和右子树
- 将这两颗字数连接到根节点的左右位置
2、代码实现
代码参考:
class Solution {
private Map<Integer, Integer> indexMap;
public TreeNode myBuildTree(int[] preorder, int[] inorder, int preorder_left, int preorder_right, int inorder_left, int inorder_right) {
if (preorder_left > preorder_right) {
return null;
}
// 前序遍历中的第一个节点就是根节点
int preorder_root = preorder_left;
// 在中序遍历中定位根节点
int inorder_root = indexMap.get(preorder[preorder_root]);
// 先把根节点建立出来
TreeNode root = new TreeNode(preorder[preorder_root]);
// 得到左子树中的节点数目
int size_left_subtree = inorder_root - inorder_left;
// 递归地构造左子树,并连接到根节点
// 先序遍历中「从 左边界+1 开始的 size_left_subtree」个元素就对应了中序遍历中「从 左边界 开始到 根节点定位-1」的元素
root.left = myBuildTree(preorder, inorder, preorder_left + 1, preorder_left + size_left_subtree, inorder_left, inorder_root - 1);
// 递归地构造右子树,并连接到根节点
// 先序遍历中「从 左边界+1+左子树节点数目 开始到 右边界」的元素就对应了中序遍历中「从 根节点定位+1 到 右边界」的元素
root.right = myBuildTree(preorder, inorder, preorder_left + size_left_subtree + 1, preorder_right, inorder_root + 1, inorder_right);
return root;
}
public TreeNode buildTree(int[] preorder, int[] inorder) {
int n = preorder.length;
// 构造哈希映射,帮助我们快速定位根节点
indexMap = new HashMap<Integer, Integer>();
for (int i = 0; i < n; i++) {
indexMap.put(inorder[i], i);
}
return myBuildTree(preorder, inorder, 0, n - 1, 0, n - 1);
}
}
3、时间复杂度
时间复杂度 : O(n)
其中n是树中的节点个数。
空间复杂度: O(n)
其中n是树中的节点个数。
三、总结
在中序遍历中对根节点进行定位时,比较容易的方法是扫描中序遍历的结果找出根节点,但是这样做时间复杂度较高。
所以,就使用了哈希表来帮助我们快速的定位到根节点。
对于哈希映射中每个键值对,值表示其在中序遍历中出现的位置,键表示其元素的值。
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)