python手势识别
【摘要】 手势识别
在计算机科学中,手势识别是通过数学算法来识别人类手势的一个议题。手势识别可以来自人的身体各部位的运动,但一般是指脸部和手的运动。用户可以使用简单的手势来控制或与设备交互,让计算机理解人类的行为。其核心技术为手势分割、手势分析以及手势识别。
未来的可用性必然是极大的
实现效果:
获取摄像头
cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#读取文件
#cap = cv2.VideoCapture(0)#读取摄像头
while(True):
ret, frame = cap.read() key = cv2.waitKey(50) & 0xFF
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
肤色检测
这一部分较为重要,主要检测出人体的范围
def A(img):
YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #转换至YCrCb空间
(y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值
cr1 = cv2.GaussianBlur(cr, (5,5), 0)
_, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu处理
res = cv2.bitwise_and(img,img, mask = skin)
return res
轮廓处理
def B(img):
#binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测
h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #寻找轮廓
contour = h[0]
contour = sorted(contour, key = cv2.contourArea, reverse=True)#已轮廓区域面积进行排序
#contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标
bg = np.ones(dst.shape, np.uint8) *255#创建白色幕布
ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) #绘制黑色轮廓
return ret
全部代码:
""" 从视频读取帧保存为图片"""
import cv2
import numpy as np
#cap = cv2.VideoCapture("C:/Users/lenovo/Videos/1.mp4")#读取文件
cap = cv2.VideoCapture(0)#读取摄像头
#皮肤检测
def A(img):
YCrCb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) #转换至YCrCb空间
(y,cr,cb) = cv2.split(YCrCb) #拆分出Y,Cr,Cb值
cr1 = cv2.GaussianBlur(cr, (5,5), 0)
_, skin = cv2.threshold(cr1, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) #Ostu处理
res = cv2.bitwise_and(img,img, mask = skin)
return res
def B(img):
#binaryimg = cv2.Canny(Laplacian, 50, 200) #二值化,canny检测
h = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) #寻找轮廓
contour = h[0]
contour = sorted(contour, key = cv2.contourArea, reverse=True)#已轮廓区域面积进行排序
#contourmax = contour[0][:, 0, :]#保留区域面积最大的轮廓点坐标
bg = np.ones(dst.shape, np.uint8) *255#创建白色幕布
ret = cv2.drawContours(bg,contour[0],-1,(0,0,0),3) #绘制黑色轮廓
return ret
while(True):
ret, frame = cap.read()
#下面三行可以根据自己的电脑进行调节
src = cv2.resize(frame,(400,350), interpolation=cv2.INTER_CUBIC)#窗口大小
cv2.rectangle(src, (90, 60), (300, 300 ), (0, 255, 0))#框出截取位置
roi = src[60:300 , 90:300] # 获取手势框图
res = A(roi) # 进行肤色检测
cv2.imshow("0",roi)
gray = cv2.cvtColor(res, cv2.COLOR_BGR2GRAY)
dst = cv2.Laplacian(gray, cv2.CV_16S, ksize = 3)
Laplacian = cv2.convertScaleAbs(dst)
contour = B(Laplacian)#轮廓处理
cv2.imshow("2",contour)
key = cv2.waitKey(50) & 0xFF
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
【版权声明】本文为华为云社区用户原创内容,转载时必须标注文章的来源(华为云社区)、文章链接、文章作者等基本信息, 否则作者和本社区有权追究责任。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)