Google Earth Engine ——FLDAS: 发展中国家的粮食安全评估数据集

举报
此星光明 发表于 2022/04/16 01:37:05 2022/04/16
【摘要】 The FLDAS dataset (McNally et al. 2017), was designed to assist with food security assessments in data-sparse, developing country settings. It includes information on ma...

The FLDAS dataset (McNally et al. 2017), was designed to assist with food security assessments in data-sparse, developing country settings. It includes information on many climate-related variables including moisture content, humidity, evapotranspiration, average soil temperature, total precipitation rate, etc.

There are multiple different FLDAS datasets; this one uses Noah version 3.6.1 surface model with CHIRPS-6 hourly rainfall that has been downscaled using the NASA Land Surface Data Toolkit. which is part of the [Land Information System framework](LIS; Software Suite | LIS Framework). Temporal desegregation is required so that daily rainfall inputs can be used in both energy and water balance calculations

For forcing data, this simulation uses a combination of the new version of Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) data and Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS), a quasi-global rainfall dataset designed for seasonal drought monitoring and trend analysis (Funk et al., 2015).

Documentation:

FLDAS数据集(McNally等人,2017年),旨在协助数据稀少的发展中国家的粮食安全评估。它包括许多气候相关变量的信息,包括含水量、湿度、蒸发量、平均土壤温度、总降水率等。

有多个不同的FLDAS数据集;这个数据集使用Noah 3.6.1版本的地表模型和CHIRPS-6小时降雨量,该模型已使用NASA地表数据工具箱进行了降尺度处理。它是[土地信息系统框架](LIS;https://lis.gsfc.nasa.gov/)的一部分。需要进行时间上的分离,以便在能量和水平衡计算中使用每日降雨量输入。

对于强迫数据,本模拟使用了新版本的研究与应用的现代时代回顾分析第2版(MERRA-2)数据和气候危害小组红外降水与站数据(CHIRPS)的组合,这是一个准全球降水数据集,设计用于季节性干旱监测和趋势分析(Funk等人,2015)。

Dataset Availability

1982-01-01T00:00:00 - 2021-08-01T00:00:00

Dataset Provider

NASA GES DISC at NASA Goddard Space Flight Center

Collection Snippet

ee.ImageCollection("NASA/FLDAS/NOAH01/C/GL/M/V001")

Resolution

11132 meters

Bands Table

Name Description Units
Evap_tavg Evapotranspiration kg m-2 s-1
LWdown_f_tavg Downward longwave radiation flux W m-2
Lwnet_tavg Net longwave radiation flux W m-2
Psurf_f_tavg Surface pressure Pa
Qair_f_tavg Specific humidity kg kg-1
Qg_tavg Soil heat flux W m-2
Qh_tavg Sensible heat net flux W m-2
Qle_tavg Latent heat net flux W m-2
Qs_tavg Storm surface runoff kg m-2 s-1
Qsb_tavg Baseflow-groundwater runoff kg m-2 s-1
RadT_tavg Surface radiative temperature K
Rainf_f_tavg Total precipitation rate kg m-2 s-1
SnowCover_inst Snow cover fraction
SnowDepth_inst Snow depth m
Snowf_tavg Snowfall rate kg m-2 s-1
SoilMoi00_10cm_tavg Soil moisture (0 - 10 cm underground) m^3 m-3
SoilMoi10_40cm_tavg Soil moisture (10 - 40 cm underground) m^3 m-3
SoilMoi100_200cm_tavg Soil moisture (100 - 200 cm underground) m^3 m-3
SoilMoi40_100cm_tavg Soil moisture (40 - 100 cm underground) m^3 m-3
SoilTemp00_10cm_tavg Soil temperature (0 - 10 cm underground) K
SoilTemp10_40cm_tavg Soil temperature (10 - 40 cm underground) K
SoilTemp100_200cm_tavg Soil temperature (100 - 200 cm underground) K
SoilTemp40_100cm_tavg Soil temperature (40 - 100 cm underground) K
SWdown_f_tavg Surface downward shortwave radiation W m-2
SWE_inst Snow water equivalent kg m-2
Swnet_tavg Net shortwave radiation flux W m-2
Tair_f_tavg Near surface air temperature K
Wind_f_tavg Near surface wind speed m s-1

使用说明:

Distribution of data from the Goddard Earth Sciences Data and Information Services Center (GES DISC) is funded by NASA's Science Mission Directorate (SMD). Consistent with NASA Earth Science Data and Information Policy, data from the GES DISC archive are available free to the user community. For more information visit the GES DISC Data Policy page.

引用:

If you use these data in your research or applications, please include a reference in your publication(s) similar to the following example: Amy McNally NASA/GSFC/HSL (2018), FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: [Data Access Date], doi:10.5067/5NHC22T9375G

McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., Funk, C., Peters-Lidard, C.D., & Verdin, J. P. (2017). A land data assimilation system for sub-Saharan Africa food and water security applications. Scientific Data, 4, 170012.

如果你在你的研究或应用中使用这些数据,请在你的出版物中包括类似于以下例子的参考。Amy McNally NASA/GSFC/HSL (2018), FLDAS Noah Land Surface Model L4 Global Monthly 0.1 x 0.1 degree (MERRA-2 and CHIRPS), Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center(GES DISC), Accessed: [数据访问日期], doi:10.5067/5NHC22T9375G

McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson, P., Wang, S., Funk, C., Peters-Lidard, C.D., & Verdin, J. P. (2017). 用于撒哈拉以南非洲粮食和水安全应用的土地数据同化系统。科学数据,4, 170012。

代码:


  
  1. var dataset=ee.ImageCollection('NASA/FLDAS/NOAH01/C/GL/M/V001')
  2. .filter(ee.Filter.date('2018-11-01', '2018-12-01'));
  3. var layer = dataset.select('Evap_tavg');
  4. var band_viz = {
  5. min: 0.0,
  6. max: 0.00005,
  7. opacity: 1.0,
  8. palette: ["black", "blue", "purple", "cyan", "green", "yellow", "red"]
  9. };
  10. Map.setCenter(30.0, 30.0, 2);
  11. Map.addLayer(layer, band_viz, 'Average Evapotranspiration');

获取更多云计算资源请前往:(1条消息) 此星光明的博客_CSDN博客-GEE数据集专栏,Google Earth Engine,GEE学习专栏领域博主

文章来源: blog.csdn.net,作者:此星光明2021年博客之星云计算Top3,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/qq_31988139/article/details/120485963

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。