从零开始学Pytorch(十八)之kaggle图像分类
我们将运用在前面几节中学到的知识来参加Kaggle竞赛,该竞赛解决了CIFAR-10图像分类问题。比赛网址是https://www.kaggle.com/c/cifar-10.
-
import numpy as np
-
import torch
-
import torch.nn as nn
-
import torch.optim as optim
-
import torchvision
-
import torchvision.transforms as transforms
-
import torch.nn.functional as F
-
import torch.optim as optim
-
from torchvision import datasets, transforms
-
import os
-
import time
获取和组织数据集
比赛数据分为训练集和测试集。训练集包含 50,000 图片。测试集包含 300,000 图片。两个数据集中的图像格式均为PNG,高度和宽度均为32像素,并具有三个颜色通道(RGB)。图像涵盖10个类别:飞机,汽车,鸟类,猫,鹿,狗,青蛙,马,船和卡车。 为了更容易上手,我们提供了上述数据集的小样本。“ train_tiny.zip”包含 80 训练样本,而“ test_tiny.zip”包含100个测试样本。它们的未压缩文件夹名称分别是“ train_tiny”和“ test_tiny”。
图像增强
-
data_transform = transforms.Compose([
-
transforms.Resize(40),
-
transforms.RandomHorizontalFlip(),
-
transforms.RandomCrop(32),
-
transforms.ToTensor()
-
])
-
trainset = torchvision.datasets.ImageFolder(root='/home/kesci/input/CIFAR102891/cifar-10/train'
-
, transform=data_transform)
-
data = [d[0].data.cpu().numpy() for d in trainset]
-
# 图像增强
-
transform_train = transforms.Compose([
-
transforms.RandomCrop(32, padding=4), #先四周填充0,再把图像随机裁剪成32*32
-
transforms.RandomHorizontalFlip(), #图像一半的概率翻转,一半的概率不翻转
-
transforms.ToTensor(),
-
transforms.Normalize((0.4731, 0.4822, 0.4465), (0.2212, 0.1994, 0.2010)), #R,G,B每层的归一化用到的均值和方差
-
])
-
-
transform_test = transforms.Compose([
-
transforms.ToTensor(),
-
transforms.Normalize((0.4731, 0.4822, 0.4465), (0.2212, 0.1994, 0.2010)),
-
])
导入数据集
-
train_dir = '/home/kesci/input/CIFAR102891/cifar-10/train'
-
test_dir = '/home/kesci/input/CIFAR102891/cifar-10/test'
-
-
trainset = torchvision.datasets.ImageFolder(root=train_dir, transform=transform_train)
-
trainloader = torch.utils.data.DataLoader(trainset, batch_size=256, shuffle=True)
-
-
testset = torchvision.datasets.ImageFolder(root=test_dir, transform=transform_test)
-
testloader = torch.utils.data.DataLoader(testset, batch_size=256, shuffle=False)
-
-
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'forg', 'horse', 'ship', 'truck']
定义模型
ResNet-18网络结构:ResNet全名Residual Network残差网络。Kaiming He 的《Deep Residual Learning for Image Recognition》获得了CVPR最佳论文。他提出的深度残差网络在2015年可以说是洗刷了图像方面的各大比赛,以绝对优势取得了多个比赛的冠军。而且它在保证网络精度的前提下,将网络的深度达到了152层,后来又进一步加到1000的深度。
Image Name
-
class ResidualBlock(nn.Module): # 我们定义网络时一般是继承的torch.nn.Module创建新的子类
-
-
def __init__(self, inchannel, outchannel, stride=1):
-
super(ResidualBlock, self).__init__()
-
#torch.nn.Sequential是一个Sequential容器,模块将按照构造函数中传递的顺序添加到模块中。
-
self.left = nn.Sequential(
-
nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
-
# 添加第一个卷积层,调用了nn里面的Conv2d()
-
nn.BatchNorm2d(outchannel), # 进行数据的归一化处理
-
nn.ReLU(inplace=True), # 修正线性单元,是一种人工神经网络中常用的激活函数
-
nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
-
nn.BatchNorm2d(outchannel)
-
)
-
self.shortcut = nn.Sequential()
-
if stride != 1 or inchannel != outchannel:
-
self.shortcut = nn.Sequential(
-
nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
-
nn.BatchNorm2d(outchannel)
-
)
-
# 便于之后的联合,要判断Y = self.left(X)的形状是否与X相同
-
-
def forward(self, x): # 将两个模块的特征进行结合,并使用ReLU激活函数得到最终的特征。
-
out = self.left(x)
-
out += self.shortcut(x)
-
out = F.relu(out)
-
return out
-
-
class ResNet(nn.Module):
-
def __init__(self, ResidualBlock, num_classes=10):
-
super(ResNet, self).__init__()
-
self.inchannel = 64
-
self.conv1 = nn.Sequential( # 用3个3x3的卷积核代替7x7的卷积核,减少模型参数
-
nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
-
nn.BatchNorm2d(64),
-
nn.ReLU(),
-
)
-
self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1)
-
self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
-
self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
-
self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
-
self.fc = nn.Linear(512, num_classes)
-
-
def make_layer(self, block, channels, num_blocks, stride):
-
strides = [stride] + [1] * (num_blocks - 1) #第一个ResidualBlock的步幅由make_layer的函数参数stride指定
-
# ,后续的num_blocks-1个ResidualBlock步幅是1
-
layers = []
-
for stride in strides:
-
layers.append(block(self.inchannel, channels, stride))
-
self.inchannel = channels
-
return nn.Sequential(*layers)
-
-
def forward(self, x):
-
out = self.conv1(x)
-
out = self.layer1(out)
-
out = self.layer2(out)
-
out = self.layer3(out)
-
out = self.layer4(out)
-
out = F.avg_pool2d(out, 4)
-
out = out.view(out.size(0), -1)
-
out = self.fc(out)
-
return out
-
-
-
def ResNet18():
-
return ResNet(ResidualBlock)
-
训练和测试
-
# 定义是否使用GPU
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
-
-
# 超参数设置
-
EPOCH = 20 #遍历数据集次数
-
pre_epoch = 0 # 定义已经遍历数据集的次数
-
LR = 0.1 #学习率
-
-
# 模型定义-ResNet
-
net = ResNet18().to(device)
-
-
# 定义损失函数和优化方式
-
criterion = nn.CrossEntropyLoss() #损失函数为交叉熵,多用于多分类问题
-
optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4)
-
#优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)
-
-
# 训练
-
if __name__ == "__main__":
-
print("Start Training, Resnet-18!")
-
num_iters = 0
-
for epoch in range(pre_epoch, EPOCH):
-
print('\nEpoch: %d' % (epoch + 1))
-
net.train()
-
sum_loss = 0.0
-
correct = 0.0
-
total = 0
-
for i, data in enumerate(trainloader, 0):
-
#用于将一个可遍历的数据对象(如列表、元组或字符串)组合为一个索引序列,同时列出数据和数据下标,
-
#下标起始位置为0,返回 enumerate(枚举) 对象。
-
-
num_iters += 1
-
inputs, labels = data
-
inputs, labels = inputs.to(device), labels.to(device)
-
optimizer.zero_grad() # 清空梯度
-
-
# forward + backward
-
outputs = net(inputs)
-
loss = criterion(outputs, labels)
-
loss.backward()
-
optimizer.step()
-
-
sum_loss += loss.item() * labels.size(0)
-
_, predicted = torch.max(outputs, 1) #选出每一列中最大的值作为预测结果
-
total += labels.size(0)
-
correct += (predicted == labels).sum().item()
-
# 每20个batch打印一次loss和准确率
-
if (i + 1) % 20 == 0:
-
print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% '
-
% (epoch + 1, num_iters, sum_loss / (i + 1), 100. * correct / total))
-
-
print("Training Finished, TotalEPOCH=%d" % EPOCH)
文章来源: blog.csdn.net,作者:小小谢先生,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/xiewenrui1996/article/details/105131001
- 点赞
- 收藏
- 关注作者
评论(0)