Google Earth Engine ——2001-2017年非洲0-200 厘米深度的基岩深度,预测平均值和标准偏差数据集

举报
此星光明 发表于 2022/04/15 23:14:09 2022/04/15
【摘要】 iSDAsoil Depth to Bedrock Depth to bedrock at 0-200 cm depth, predicted mean and standard deviation. Due to the potential cropland mask that was used for generating th...

iSDAsoil Depth to Bedrock

Depth to bedrock at 0-200 cm depth, predicted mean and standard deviation.

Due to the potential cropland mask that was used for generating the data, many areas of exposed rock (where depth to bedrock would be 0 cm) have been masked out and therefore appear as nodata values. The maximum depth of this layer is 200 cm, but this does not represent the maximum possible soil depth, therefore values of 200 should be interpreted as >= 200.

In areas of dense jungle (generally over central Africa), model accuracy is low and therefore artefacts such as banding (striping) might be seen.

Soil property predictions were made by Innovative Solutions for Decision Agriculture Ltd. (iSDA) at 30 m pixel size using machine learning coupled with remote sensing data and a training set of over 100,000 analyzed soil samples.

Further information can be found in the FAQ and technical information documentation. To submit an issue or request support, please visit the iSDAsoil site.

0-200 厘米深度的基岩深度,预测平均值和标准偏差。 由于用于生成数据的潜在农田掩膜,许多裸露岩石区域(基岩深度为 0 厘米)已被掩蔽,因此显示为无数据值。该层的最大深度为 200 厘米,但这并不代表可能的最大土壤深度,因此值 200 应解释为 >= 200。 在茂密的丛林地区(通常在非洲中部),模型精度较低,因此可能会看到条带(条纹)等伪影。 Innovative Solutions for Decision Agriculture Ltd. (iSDA) 使用机器学习、遥感数据和超过 100,000 个分析土壤样本的训练集,以 30 m 像素大小进行了土壤特性预测。 可以在常见问题解答和技术信息文档中找到更多信息。要提交问题或请求支持,请访问 iSDAsoil 站点。

Dataset Availability

2001-01-01T00:00:00 - 2017-01-01T00:00:00

Dataset Provider

iSDA

Collection Snippet

ee.Image("ISDASOIL/Africa/v1/bedrock_depth")

Resolution

30 meters

Bands Table

Name Description Min Max Units
mean_0_200 Depth to bedrock, predicted mean at 0-200 cm depth 27 200 cm
stdev_0_200 Depth to bedrock, standard deviation at 0-20 cm depth 9 254 cm

数据引用:

Hengl, T., Miller, M.A.E., Križan, J., et al. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Sci Rep 11, 6130 (2021). doi:10.1038/s41598-021-85639-y 

代码:

var mean_0_200 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#00204D" label="0-13" opacity="1" quantity="13"/>' +
  '<ColorMapEntry color="#002D6C" label="13-26" opacity="1" quantity="26"/>' +
  '<ColorMapEntry color="#16396D" label="26-39" opacity="1" quantity="39"/>' +
  '<ColorMapEntry color="#36476B" label="39-52" opacity="1" quantity="52"/>' +
  '<ColorMapEntry color="#4B546C" label="52-65" opacity="1" quantity="65"/>' +
  '<ColorMapEntry color="#5C616E" label="65-78" opacity="1" quantity="78"/>' +
  '<ColorMapEntry color="#6C6E72" label="78-91" opacity="1" quantity="91"/>' +
  '<ColorMapEntry color="#7C7B78" label="91-104" opacity="1" quantity="104"/>' +
  '<ColorMapEntry color="#8E8A79" label="104-117" opacity="1" quantity="117"/>' +
  '<ColorMapEntry color="#A09877" label="117-130" opacity="1" quantity="130"/>' +
  '<ColorMapEntry color="#B3A772" label="130-143" opacity="1" quantity="143"/>' +
  '<ColorMapEntry color="#C6B66B" label="143-156" opacity="1" quantity="156"/>' +
  '<ColorMapEntry color="#DBC761" label="156-169" opacity="1" quantity="169"/>' +
  '<ColorMapEntry color="#F0D852" label="169-182" opacity="1" quantity="182"/>' +
  '<ColorMapEntry color="#FFEA46" label="182-200" opacity="1" quantity="195"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';

var stdev_0_200 =
'<RasterSymbolizer>' +
 '<ColorMap type="ramp">' +
  '<ColorMapEntry color="#fde725" label="low" opacity="1" quantity="14"/>' +
  '<ColorMapEntry color="#5dc962" label=" " opacity="1" quantity="18"/>' +
  '<ColorMapEntry color="#20908d" label=" " opacity="1" quantity="21"/>' +
  '<ColorMapEntry color="#3a528b" label=" " opacity="1" quantity="22"/>' +
  '<ColorMapEntry color="#440154" label="high" opacity="1" quantity="25"/>' +
 '</ColorMap>' +
 '<ContrastEnhancement/>' +
'</RasterSymbolizer>';

var raw = ee.Image("ISDASOIL/Africa/v1/bedrock_depth");
Map.addLayer(
    raw.select(0).sldStyle(mean_0_200), {},
    "Bedrock depth, mean visualization, 0-200 cm");
Map.addLayer(
    raw.select(1).sldStyle(stdev_0_200), {},
    "Bedrock depth, stdev visualization, 0-200 cm");

var visualization = {min: 27, max: 200};

Map.setCenter(25, -3, 2);

Map.addLayer(raw.select(0), visualization, "Bedrock depth, mean, 0-200 cm");

 

 

文章来源: blog.csdn.net,作者:此星光明2021年博客之星云计算Top3,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/qq_31988139/article/details/120271530

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。