多人姿态识别框架——AlphaPose

举报
小小谢先生 发表于 2022/04/14 00:50:03 2022/04/14
【摘要】 多人姿态识别简介 人体姿态估计有两个主流方案:Two-step framework 和Part-based framework。第一种方案是检测环境中的每一个人体检测框,然后独立地去检测每一个人体区域的姿态(自顶向下的方法)。第二种方案是首先检测出环境中的所有肢体节点,然后进行拼接得到多人的骨架(自底向上的方法)。第一种方案,姿态检测...

多人姿态识别简介

人体姿态估计有两个主流方案:Two-step frameworkPart-based framework。第一种方案是检测环境中的每一个人体检测框,然后独立地去检测每一个人体区域的姿态(自顶向下的方法)。第二种方案是首先检测出环境中的所有肢体节点,然后进行拼接得到多人的骨架(自底向上的方法)。第一种方案,姿态检测准确度高度以来目标区域框检测的质量。第二种方案,如果两人离得十分近,容易出现模棱两可的情况,而且由于是依赖两个部件之间的关系,所以失去了对全局的信息获取。

AlphaPose

AlphaPose采用自顶向下的方法,提出了RMPE(区域多人姿态检测)框架。该框架主要包括symmetric spatial transformer network (SSTN)、Parametric Pose Non- Maximum-Suppression (NMS)和Pose-Guided Proposals Generator (PGPG)。并且使用symmetric spatial transformer network (SSTN)、deep proposals generator (DPG) 、parametric pose nonmaximum suppression (p-NMS) 三个技术来解决野外场景下多人姿态估计问题。

在SPPE结构上添加SSTN,能够在不精准的区域框中提取到高质量的人体区域。并行的SPPE分支(SSTN)来优化自身网络。使用parametric pose NMS来解决冗余检测问题,在该结构中,使用了自创的姿态距离度量方案比较姿态之间的相似度。用数据驱动的方法优化姿态距离参数。最后我们使用PGPG来强化训练数据,通过学习输出结果中不同姿态的描述信息,来模仿人体区域框的生成过程,进一步产生一个更大的训练集。

相关论文

https://arxiv.org/abs/1612.00137

论文代码

https://github.com/MVIG-SJTU/AlphaPose

获取代码

git clone https://github.com/MVIG-SJTU/AlphaPose.git

 

按照repo的安装说明完成代码库的安装,然后运行下面命令行:

python scripts/demo_inference.py --cfg configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml --checkpoint pretrained_models/fast_res50_256x192.pth --indir examples/demo/

 

运行结果如下:

one more thing

等过一段时间博主有时间可以详细讲解一下Alphapose这篇论文,里面的许多思想或是技术都是值得我们研究和借鉴的。

文章来源: blog.csdn.net,作者:小小谢先生,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/xiewenrui1996/article/details/110089786

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。