Singleton单例模式(Java代码实现)——创建型模式

举报
YuShiwen 发表于 2022/03/30 23:48:33 2022/03/30
【摘要】 在本人所编写的关于23种设计模式的文章中,前言基本上都是一样的,读者可以从章节2开始阅读,本篇是关于创建型模式中单例模式(Singleton Pattern)的详解。 文章目录 1.前言2.单例设...

在本人所编写的关于23种设计模式的文章中,前言基本上都是一样的,读者可以从章节2开始阅读,本篇是关于创建型模式中单例模式(Singleton Pattern)的详解。

1.前言

根据Design Patterns - Elements of Reusable Object-Oriented Software(中文译名:设计模式 - 可复用面向对象软件的基础) 一书,四位作者把设计模式分为三大类,分别如下:

1.创建型模式
这些设计模式提供了一种在创建对象的同时隐藏创建逻辑的方式,而不是使用 new 运算符直接实例化对象。这使得程序在判断针对某个给定实例需要创建哪些对象时更加灵活。

  • 单例模式(Singleton Pattern)
  • 抽象工厂模式(Abstract Factory Pattern)
  • 工厂方法模式(Factory Method Pattern)
  • 建造者模式(Builder Pattern)
  • 原型模式(Prototype Pattern)

2.结构型模式
这些设计模式关注类和对象的组合。继承的概念被用来组合接口和定义组合对象获得新功能的方式。

  • 适配器模式(Adapter Pattern)
  • 桥接模式(Bridge Pattern)
  • 组合模式(Composite Pattern)
  • 装饰器模式(Decorator Pattern)
  • 外观模式(Facade Pattern)
  • 享元模式(Flyweight Pattern)
  • 代理模式(Proxy Pattern)

3.行为型模式
这些设计模式特别关注对象之间的通信。

  • 责任链模式(Chain of Responsibility Pattern)
  • 命令模式(Command Pattern)
  • 解释器模式(Interpreter Pattern)
  • 迭代器模式(Iterator Pattern)
  • 中介者模式(Mediator Pattern)
  • 备忘录模式(Memento Pattern)
  • 观察者模式(Observer Pattern)
  • 状态模式(State Pattern)
  • 策略模式(Strategy Pattern)
  • 模板模式(Template Pattern)
  • 访问者模式(Visitor Pattern)

本篇是关于创建型模式中单例模式(Singleton Pattern)的详解。

2.单例设计模式介绍

  • 保证一个类仅有一个实例,并提供一个访问它的全局访问点。
  • 也就是说采取一定的方法保证在整个的软件系统中,对某个类只能存在一个对象实例,并且该类只提供一个取得其对象实例的方法(静态方法)。

3.单例设计模式八种实现方式

单例模式有八种方式:

  • 饿汉式(静态属性)
  • 饿汉式(静态代码块)
  • 懒汉式(线程不安全)
  • 懒汉式(线程安全,同步方法)
  • 懒汉式(线程安全,同步代码块)
  • 双重检查
  • 静态内部类
  • 枚举
    下面我们按照顺序讲解,首先我们来看饿汉式(静态常量):

3.1.饿汉式(静态属性)

步骤如下:

  1. 构造器私有化 (防止 new )。
  2. 类的内部创建对象。
  3. 向外暴露一个静态的公共方法。

代码演示:

public class SingletonMode01 {

    //1.构造器私有化 (防止 new )
    private SingletonMode01(){

    }

    //2.类的内部创建对象(静态属性)
    private static SingletonMode01 instance = new SingletonMode01();

    //3.向外暴露一个静态的公共方法。getInstance
    public static SingletonMode01 getInstance(){
        return instance;
    }

}


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

优缺点:

  • 优点:这种写法比较简单,就是在类装载的时候就完成实例化。避免了线程同步问题。
  • 缺点:在类装载的时候就完成实例化,没有达到Lazy Loading的效果。如果从始至终从未使用过这个实例,则会造成内存的浪费。

这种单例模式可用,可能造成内存浪费

3.2.饿汉式(静态代码块)

步骤如下:

  • 与1相同就是对静态常量赋值时在静态代码块中执行

代码演示:

public class SingletonMode02 {
    //1.构造器私有化 (防止 new )
    private SingletonMode02(){

    }

    //2.类的内部创建对象(静态常量)
    private static SingletonMode02 instance;
    
    //在静态代码中对静态常量赋值
    static{
        instance = new SingletonMode02();
    }

    //3.向外暴露一个静态的公共方法。getInstance
    public static SingletonMode02 getInstance(){
        return instance;
    }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

优缺点:

  • 这种方式和上面的方式其实类似,只不过将类实例化的过程放在了静态代码块中,也是在类装载的时候,就执行静态代码块中的代码,初始化类的实例。优缺点和上面是一样的。

这种单例模式可用,但是可能造成内存浪费

3.3.懒汉式(线程不安全)

代码演示:

public class SingletonMode03 {
    
    private static SingletonMode03 instance; 
    
    private SingletonMode03(){
        
    }
    
    //当调用getInstance才创建单例对象,饿汉式
    public static SingletonMode03 getInstance(){
        if(instance == null){
             instance = new SingletonMode03();
        }
        return instance;
    }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16

优缺点:

  • 起到了Lazy Loading的效果,但是只能在单线程下使用。
  • 如果在多线程下,一个线程进入了if (instance == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例。所以在多线程环境下不可使用这种方式。

在实际开发中,不要使用这种方式。

3.4.懒汉式(线程安全,同步方法)

代码演示:

public class SingletonMode04 {
    
    private static SingletonMode04 instance;
    
    private SingletonMode04(){
        
    }
    
    //加入了同步方法,解决线程不安全问题
    public static synchronized SingletonMode04 getInstance(){
        if(instance == null){
            instance = new SingletonMode04();
        }
        return instance;
    }
}


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17

优缺点:

  • 解决了线程不安全问题
  • 效率太低了,每个线程在想获得类的实例时候,执行getInstance()方法都要进行同步。而其实这个方法只执行一次实例化代码就够了,后面的想获得该类实例,直接return就行了。方法进行同步效率太低。

在实际开发中,不推荐使用这种方式。

3.5.懒汉式(线程安全,同步代码块)

public class SingletonMode05 {

    private static SingletonMode05 instance;

    private SingletonMode05 (){

    }

    //加入了同步代码块,解决线程不安全问题
    public static SingletonMode05 getInstance(){
        if(instance == null){
            synchronized (SingletonMode05.class){
                instance = new SingletonMode05();
            }
        }
        return instance;
    }
}


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19

优缺点:

  • 这种方式,本意是想对第四种实现方式的改进,因为前面同步方法效率太低, 改为同步产生实例化的的代码块。
  • 但是这种同步并不能起到线程同步的作用。跟第3种实现方式遇到的情形一致,假如一个线程进入了if (instance == null)判断语句块,还未来得及往下执行,另一个线程也通过了这个判断语句,这时便会产生多个实例

在实际开发中,不能使用这种方式

3.6.双重检查

public class SingletonMode06 {

    //volatile关键字:
    //1. 保证变量的可见性:当一个被volatile关键字修饰的变量被一个线程修改的时候,其他线程可以立刻得到修改之后的结果。
    //   当一个线程向被volatile关键字修饰的变量写入数据的时候,虚拟机会强制它被值刷新到主内存中。
    //   当一个线程用到被volatile关键字修饰的值的时候,虚拟机会强制要求它从主内存中读取。
    //2. 屏蔽指令重排序:指令重排序是编译器和处理器为了高效对程序进行优化的手段;
    //   它只能保证程序执行的结果时正确的,但是无法保证程序的操作顺序与代码顺序一致。
    //   这在单线程中不会构成问题,但是在多线程中就会出现问题。
    //   非常经典的例子是在单例方法中同时对字段加入voliate,就是为了防止指令重排序。
    private static volatile SingletonMode06 instance;

    private SingletonMode06() {

    }

    //使用双重检查
    public static SingletonMode06 getInstance() {
        if(instance == null){
            synchronized (SingletonMode06.class){
                if(instance == null){
                    instance = new SingletonMode06();
                }
            }
        }
        return instance;
    }
}


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29

优缺点:

  • Double-Check概念是多线程开发中常使用到的,如代码中所示,我们进行了两次if (instance == null)检查,这样就可以保证线程安全了。
  • 这样,实例化代码只用执行一次,后面再次访问时,判断if (instance == null),直接return实例化对象,也避免的反复进行方法同步。
  • 这种方法线程安全;延迟加载;效率较高

在实际开发中,推荐使用这种单例设计模式

3.7.静态内部类

public class SingletonMode07 {

    private SingletonMode07(){

    }

    private static class SingletonModeInstance{
        private static final SingletonMode07 INSTANCE = new SingletonMode07();
    }

    public static SingletonMode07  getInstance(){
        return SingletonModeInstance.INSTANCE;
    }
}


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15

优缺点:

  • 这种方式采用了类装载的机制来保证初始化实例时只有一个线程。
  • 静态内部类方式在SingletonMode07类被装载时INSTANCE并不会立即实例化,而是在需要实例化时,调用getInstance方法,才会装载SingletonModeInstance类,从而完成SingletonMode07的实例化。
  • 类的静态属性只会在第一次加载类的时候初始化,所以在这里,JVM帮助我们保证了线程的安全性,在类进行初始化时,别的线程是无法进入的。
  • 这种方式避免了线程不安全,利用静态内部类特点实现延迟加载,效率高

推荐使用这种方法。

3.8.枚举

public enum SingletonMode08 {
    
    INSTANCE("单例模式",123456);

    private String name;
    private int number;

    SingletonMode08(String name, int number) {
        this.name = name;
        this.number = number;
    }

    @Override
    public String toString() {
        return "SingletonMode08{" +
                "name='" + name + '\'' +
                ", number=" + number +
                '}';
    }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20

优缺点:

  • 这借助JDK1.5中添加的枚举来实现单例模式。不仅能避免多线程同步问题,而且还能防止反序列化重新创建新的对象。
  • 这种方式是Effective Java作者Josh Bloch 提倡的方式

这种方式推荐使用

4.单例设计模式小结

  • 单例模式保证了 系统内存中该类只存在一个对象,节省了系统资源,对于一些需要频繁创建销毁的对象,使用单例模式可以提高系统性能
  • 当想实例化一个单例类的时候,必须要记住使用相应的获取对象的方法,而不是使用new
  • 单例模式使用的场景:需要频繁的进行创建和销毁的对象、创建对象时耗时过多或耗费资源过多(即:重量级对象),但又经常用到的对象、工具类对象、频繁访问数据库或文件的对象(比如数据源、session工厂等)

文章来源: blog.csdn.net,作者:Mr.Yushiwen,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/MrYushiwen/article/details/112316230

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。