查找算法之顺序查找,折半查找,二叉查找树

举报
嵌入式与Linux那些事 发表于 2022/03/29 00:05:37 2022/03/29
【摘要】 文章目录 查找表的概念顺序查找折半查找折半查找算法 二叉查找树二叉查找树概念使用二叉排序树查找关键字二叉排序树中插入关键字二叉排序树中删除关键字 查找表的概念   查找表是由同一类...

查找表的概念

  查找表是由同一类型的数据元素构成的集合。例如电话号码簿和字典都可以看作是一张查找表。
  在查找表中只做查找操作,而不改动表中数据元素,称此类查找表为静态查找表;反之,在查找表中做查找操作的同时进行插入数据或者删除数据的操作,称此类表为动态查找表。

顺序查找

  顺序查找的查找过程为:从表中的最后一个数据元素开始,逐个同记录的关键字做比较,如果匹配成功,则查找成功;反之,如果直到表中第一个关键字查找完也没有成功匹配,则查找失败
同时,在程序中初始化创建查找表时,由于是顺序存储,所以将所有的数据元素存储在数组中,但是把第一个位置留给了用户用于查找的关键字。例如,在顺序表{1,2,3,4,5,6}中查找数据元素值为 7 的元素,则添加后的顺序表为:
在这里插入图片描述
            图1
  顺序表的一端添加用户用于搜索的关键字,称作“监视哨”。
  图 1 中监视哨的位置也可放在数据元素 6 的后面(这种情况下,整个查找的顺序应有逆向查找改为顺序查找)。
  放置好监视哨之后,顺序表遍历从没有监视哨的一端依次进行,如果查找表中有用户需要的数据,则程序输出该位置;反之,程序会运行至监视哨,此时匹配成功,程序停止运行,但是结果是查找失败。
代码实现:

/*
 * @Description: 顺序查找算法
 * @Version: V1.0
 * @Autor: Carlos
 * @Date: 2020-05-22 15:52:11
 * @LastEditors: Carlos
 * @LastEditTime: 2020-06-03 16:56:06
 */ 
#include <stdio.h>
#include <stdlib.h>
#define keyType int
typedef struct {
    //查找表中每个数据元素的值
    keyType key;
    //如果需要,还可以添加其他属性
}ElemType;

typedef struct{
    //存放查找表中数据元素的数组
    ElemType *elem;
    //记录查找表中数据的总数量
    int length;
}SSTable;
/**
 * @Description: 创建查找表
 * @Param: SSTable **st 指向结构体指针的指针,即指针变量的指针,int length 创建的二叉树的长度
 * @Return: 无
 * @Author: Carlos
 */
void Create(SSTable **st,int length){
    (*st)=(SSTable*)malloc(sizeof(SSTable));
    (*st)->length=length;
    //结构体指针分配空间
    (*st)->elem =(ElemType*)malloc((length+1)*sizeof(ElemType));
    printf("输入表中的数据元素:\n");
    //根据查找表中数据元素的总长度,在存储时,从数组下标为 1 的空间开始存储数据
    for (int i=1; i<=length; i++) {
        scanf("%d",&((*st)->elem[i].key));
    }
}
/**
 * @Description: 查找表查找的功能函数,其中key为关键字
 * @Param: SSTable *st指向结构体变量的指针,keyType key 要查找的元素
 * @Return: key在查找表中的位置
 * @Author: Carlos
 */
int Search_seq(SSTable *st,keyType key){
    //将关键字作为一个数据元素存放到查找表的第一个位置,起监视哨的作用
    st->elem[0].key=key;
    int i=st->length;
    //从查找表的最后一个数据元素依次遍历,一直遍历到数组下标为0
    while (st->elem[i].key!=key) {
        i--;
    }
    //如果 i=0,说明查找失败;反之,返回的是含有关键字key的数据元素在查找表中的位置
    return i;
}
int main(int argc, const char * argv[]) {
    SSTable *st;
    Create(&st, 6);
    getchar();
    printf("请输入查找数据的关键字:\n");
    int key;
    scanf("%d",&key);
    int location=Search_seq(st, key);
    if (location==0) {
        printf("查找失败");
    }else{
        printf("数据在查找表中的位置为:%d",location);
    }
    return 0;
}


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_16933601/article/details/106500778

折半查找

  折半查找,也称二分查找,在某些情况下相比于顺序查找,使用折半查找算法的效率更高。但是该算法的使用的前提是静态查找表中的数据必须是有序的。
  例如,在{5,21,13,19,37,75,56,64,88 ,80,92}这个查找表使用折半查找算法查找数据之前,需要首先对该表中的数据按照所查的关键字进行排序:{5,13,19,21,37,56,64,75,80,88,92}。
  在折半查找之前对查找表按照所查的关键字进行排序的意思是:若查找表中存储的数据元素含有多个关键字时,使用哪种关键字做折半查找,就需要提前以该关键字对所有数据进行排序。

折半查找算法

  对静态查找表{5,13,19,21,37,56,64,75,80,88,92}采用折半查找算法查找关键字为 21 的过程为:
在这里插入图片描述
              图2
后一个关键字,指针 mid 指向处于 low 和 high 指针中间位置的关键字。在查找的过程中每次都同 mid 指向的关键字进行比较,由于整个表中的数据是有序的,因此在比较之后就可以知道要查找的关键字的大致位置。
  例如在查找关键字 21 时,首先同 56 作比较,由于21 < 56,而且这个查找表是按照升序进行排序的,所以可以判定如果静态查找表中有 21 这个关键字,就一定存在于 low 和 mid 指向的区域中间。
  因此,再次遍历时需要更新 high 指针和 mid 指针的位置,令 high 指针移动到 mid 指针的左侧一个位置上,同时令 mid 重新指向 low 指针和 high 指针的中间位置。如图3所示:
在这里插入图片描述
              图3
  同样,用 21 同 mid 指针指向的 19 作比较,19 < 21,所以可以判定 21 如果存在,肯定处于 mid 和 high 指向的区域中。所以令 low 指向 mid 右侧一个位置上,同时更新 mid 的位置。
在这里插入图片描述
              图4
  当第三次做判断时,发现 mid 就是关键字 21 ,查找结束。
  注意:在做查找的过程中,如果 low 指针和 high 指针的中间位置在计算时位于两个关键字中间,即求得 mid 的位置不是整数,需要统一做取整操作。
  折半查找的实现代码:

/*
 * @Description: 折半查找.前提是静态查找表中的数据必须是有序的。
 * @Version: V1.0
 * @Autor: Carlos
 * @Date: 2020-05-22 16:09:01
 * @LastEditors: Carlos
 * @LastEditTime: 2020-06-03 16:58:14
 */ 
#include <stdio.h>
#include <stdlib.h>
#define keyType int
typedef struct {
    //查找表中每个数据元素的值
    keyType key;
    //如果需要,还可以添加其他属性
}ElemType;

typedef struct{
    //存放查找表中数据元素的数组
    ElemType *elem;
    //记录查找表中数据的总数量
    int length;
}SSTable;
/**
 * @Description: 创建查找表
 * @Param: SSTable **st 指向结构体指针的指针,即指针变量的指针,int length 创建的二叉树的长度
 * @Return: 无
 * @Author: Carlos
 */
void Create(SSTable **st,int length){
    (*st)=(SSTable*)malloc(sizeof(SSTable));
    (*st)->length=length;
    (*st)->elem = (ElemType*)malloc((length+1)*sizeof(ElemType));
    printf("输入表中的数据元素:\n");
    //根据查找表中数据元素的总长度,在存储时,从数组下标为 1 的空间开始存储数据
    for (int i=1; i<=length; i++) {
        scanf("%d",&((*st)->elem[i].key));
    }
}
//折半查找算法
/**
 * @Description: 折半查找算法
 * @Param: SSTable *ST 指向结构体的指针,keyType key 要插入的元素
 * @Return: 成功的返回key在查找表中的位置,否则返回0
 * @Author: Carlos
 */
int Search_Bin(SSTable *ST,keyType key){
    //初始状态 low 指针指向第一个关键字
    int low=1;
    //high 指向最后一个关键字
    int high=ST->length;
    int mid;
    while (low<=high) {
        //int 本身为整形,所以,mid 每次为取整的整数
        mid=(low+high)/2;
        //如果 mid 指向的同要查找的相等,返回 mid 所指向的位置
        if (ST->elem[mid].key==key)
        {
            return mid;
        }
        //如果mid指向的关键字较大,则更新 high 指针的位置
        else if(ST->elem[mid].key>key)
        {
            high=mid-1;
        }
        //反之,则更新 low 指针的位置
        else{
            low=mid+1;
        }
    }
    return 0;
}

int main(int argc, const char * argv[]) {
    SSTable *st;
    Create(&st, 11);
    getchar();
    printf("请输入查找数据的关键字:\n");
    int key;
    scanf("%d",&key);
    int location=Search_Bin(st, key);
    //如果返回值为 0,则证明查找表中未查到 key 值,
    if (location==0) {
        printf("查找表中无该元素");
    }else{
        printf("数据在查找表中的位置为:%d",location);
    }
    return 0;
}


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90

二叉查找树

  动态查找表中做查找操作时,若查找成功可以对其进行删除;如果查找失败,即表中无该关键字,可以将该关键字插入到表中。
  动态查找表的表示方式有多种,本节介绍一种使用树结构表示动态查找表的实现方法——二叉排序树(又称为“二叉查找树”)。

二叉查找树概念

  二叉排序树要么是空二叉树,要么具有如下特点:

  • 二叉排序树中,如果其根结点有左子树,那么左子树上所有结点的值都小于根结点的值;
  • 二叉排序树中,如果其根结点有右子树,那么右子树上所有结点的值都大小根结点的值;
  • 二叉排序树的左右子树也要求都是二叉排序树;

  例如,图 5 就是一个二叉排序树:
在这里插入图片描述
              图5

使用二叉排序树查找关键字

  二叉排序树中查找某关键字时,查找过程类似于次优二叉树,在二叉排序树不为空树的前提下,首先将被查找值同树的根结点进行比较,会有 3 种不同的结果:

  1. 如果相等,查找成功;
  2. 如果比较结果为根结点的关键字值较大,则说明该关键字可能存在其左子树中;
  3. 如果比较结果为根结点的关键字值较小,则说明该关键字可能存在其右子树中;
    实现函数为:(运用递归的方法)
/**
 * @Description: 二叉排序树查找算法
 * @Param: BiTree T  KeyType key  BiTree f BiTree *p
 * @Return: 删除成功 TRUE 删除失败 FALSE
 * @Author: Carlos
 */
int SearchBST(BiTree T, KeyType key, BiTree f, BiTree *p)
{
    //如果 T 指针为空,说明查找失败,令 p 指针指向查找过程中最后一个叶子结点,并返回查找失败的信息
    if (!T)
    {
        *p = f;
        return FALSE;
    }
    //如果相等,令 p 指针指向该关键字,并返回查找成功信息
    else if (key == T->data)
    {
        *p = T;
        return TRUE;
    }
    //如果 key 值比 T 根结点的值小,则查找其左子树;反之,查找其右子树
    else if (key < T->data)
    {
        return SearchBST(T->lchild, key, T, p);
    }
    else
    {
        return SearchBST(T->rchild, key, T, p);
    }
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30

二叉排序树中插入关键字

  二叉排序树本身是动态查找表的一种表示形式,有时会在查找过程中插入或者删除表中元素,当因为查找失败而需要插入数据元素时,该数据元素的插入位置一定位于二叉排序树的叶子结点,并且一定是查找失败时访问的最后一个结点的左孩子或者右孩子。
  例如,在图 1 的二叉排序树中做查找关键字 1 的操作,当查找到关键字 3 所在的叶子结点时,判断出表中没有该关键字,此时关键字 1 的插入位置为关键字 3 的左孩子。
  所以,二叉排序树表示动态查找表做插入操作,只需要稍微更改一下上面的代码就可以实现,具体实现代码为:

/**
 * @Description: 二叉排序树查找算法
 * @Param: BiTree T  KeyType key  BiTree f BiTree *p
 * @Return: 删除成功 TRUE 删除失败 FALSE
 * @Author: Carlos
 */
int SearchBST(BiTree T, KeyType key, BiTree f, BiTree *p)
{
    //如果 T 指针为空,说明查找失败,令 p 指针指向查找过程中最后一个叶子结点,并返回查找失败的信息
    if (!T)
    {
        *p = f;
        return FALSE;
    }
    //如果相等,令 p 指针指向该关键字,并返回查找成功信息
    else if (key == T->data)
    {
        *p = T;
        return TRUE;
    }
    //如果 key 值比 T 根结点的值小,则查找其左子树;反之,查找其右子树
    else if (key < T->data)
    {
        return SearchBST(T->lchild, key, T, p);
    }
    else
    {
        return SearchBST(T->rchild, key, T, p);
    }
}
/**
 * @Description: 二叉树插入函数
 * @Param: BiTree *T 二叉树结构体指针的指针  ElemType e 要插入的元素
 * @Return: 删除成功 TRUE 删除失败 FALSE
 * @Author: Carlos
 */
int InsertBST(BiTree *T, ElemType e)
{
    BiTree p = NULL;
    //如果查找不成功,需做插入操作
    if (!SearchBST((*T), e, NULL, &p))
    {
        //初始化插入结点
        BiTree s = (BiTree)malloc(sizeof(BiTree));
        s->data = e;
        s->lchild = s->rchild = NULL;
        //如果 p 为NULL,说明该二叉排序树为空树,此时插入的结点为整棵树的根结点
        if (!p)
        {
            *T = s;
        }
        //如果 p 不为 NULL,则 p 指向的为查找失败的最后一个叶子结点,只需要通过比较 p 和 e 的值确定 s 到底是 p 的左孩子还是右孩子
        else if (e < p->data)
        {
            p->lchild = s;
        }
        else
        {
            p->rchild = s;
        }
        return TRUE;
    }
    //如果查找成功,不需要做插入操作,插入失败
    return FALSE;
}

  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65

  通过使用二叉排序树对动态查找表做查找和插入的操作,同时在中序遍历二叉排序树时,可以得到有关所有关键字的一个有序的序列。
  例如,假设原二叉排序树为空树,在对动态查找表 {3,5,7,2,1} 做查找以及插入操作时,可以构建出一个含有表中所有关键字的二叉排序树,过程如图6 所示:
在这里插入图片描述
              图6
  通过不断的查找和插入操作,最终构建的二叉排序树如图 6(5) 所示。当使用中序遍历算法遍历二叉排序树时,得到的序列为:1 2 3 5 7 ,为有序序列。
一个无序序列可以通过构建一棵二叉排序树,从而变成一个有序序列。

二叉排序树中删除关键字

  在查找过程中,如果在使用二叉排序树表示的动态查找表中删除某个数据元素时,需要在成功删除该结点的同时,依旧使这棵树为二叉排序树。
  假设要删除的为结点 p,则对于二叉排序树来说,需要根据结点 p 所在不同的位置作不同的操作,有以下 3 种可能:

  1. 结点 p 为叶子结点,此时只需要删除该结点,并修改其双亲结点的指针即可;
  2. 结点 p 只有左子树或者只有右子树,此时只需要将其左子树或者右子树直接变为结点 p 双亲结点的左子树即可;
  3. 结点 p 左右子树都有,此时有两种处理方式:
      (1).令结点 p 的左子树为其双亲结点的左子树;结点 p 的右子树为其自身直接前驱结点的右子树,如图7所示;
    在这里插入图片描述
                  图7
      (2)用结点 p 的直接前驱(或直接后继)来代替结点 p,同时在二叉排序树中对其直接前驱(或直接后继)做删除操作。如图 8 为使用直接前驱代替结点 p:
    在这里插入图片描述
                  图8
      图 8中,在对左图进行中序遍历时,得到的结点 p 的直接前驱结点为结点 s,所以直接用结点 s 覆盖结点 p,由于结点 s 还有左孩子,根据第 2 条规则,直接将其变为双亲结点的右孩子。
      具体实现代码:(可运行)
/*
 * @Description: 二叉查找树
 * @Version: V1.0
 * @Autor: Carlos
 * @Date: 2020-06-02 15:50:31
 * @LastEditors: Carlos
 * @LastEditTime: 2020-06-03 16:49:46
 */
#include <stdio.h>
#include <stdlib.h>
#define TRUE 1
#define FALSE 0
#define ElemType int
#define KeyType int
/* 二叉排序树的节点结构定义 */
typedef struct BiTNode
{
    int data;
    struct BiTNode *lchild, *rchild;
} BiTNode, *BiTree;
/**
 * @Description: 二叉排序树查找算法
 * @Param: BiTree T  KeyType key  BiTree f BiTree *p
 * @Return: 删除成功 TRUE 删除失败 FALSE
 * @Author: Carlos
 */
int SearchBST(BiTree T, KeyType key, BiTree f, BiTree *p)
{
    //如果 T 指针为空,说明查找失败,令 p 指针指向查找过程中最后一个叶子结点,并返回查找失败的信息
    if (!T)
    {
        *p = f;
        return FALSE;
    }
    //如果相等,令 p 指针指向该关键字,并返回查找成功信息
    else if (key == T->data)
    {
        *p = T;
        return TRUE;
    }
    //如果 key 值比 T 根结点的值小,则查找其左子树;反之,查找其右子树
    else if (key < T->data)
    {
        return SearchBST(T->lchild, key, T, p);
    }
    else
    {
        return SearchBST(T->rchild, key, T, p);
    }
}
/**
 * @Description: 二叉树插入函数
 * @Param: BiTree *T 二叉树结构体指针的指针  ElemType e 要插入的元素
 * @Return: 删除成功 TRUE 删除失败 FALSE
 * @Author: Carlos
 */
int InsertBST(BiTree *T, ElemType e)
{
    BiTree p = NULL;
    //如果查找不成功,需做插入操作
    if (!SearchBST((*T), e, NULL, &p))
    {
        //初始化插入结点
        BiTree s = (BiTree)malloc(sizeof(BiTree));
        s->data = e;
        s->lchild = s->rchild = NULL;
        //如果 p 为NULL,说明该二叉排序树为空树,此时插入的结点为整棵树的根结点
        if (!p)
        {
            *T = s;
        }
        //如果 p 不为 NULL,则 p 指向的为查找失败的最后一个叶子结点,只需要通过比较 p 和 e 的值确定 s 到底是 p 的左孩子还是右孩子
        else if (e < p->data)
        {
            p->lchild = s;
        }
        else
        {
            p->rchild = s;
        }
        return TRUE;
    }
    //如果查找成功,不需要做插入操作,插入失败
    return FALSE;
}
/**
 * @Description: 删除节点的函数
 * @Param: BiTree *p 指向结构体指针的指针
 * @Return: 删除成功 TRUE
 * @Author: Carlos
 */
int Delete(BiTree *p)
{
    BiTree q, s;
    //情况 1,结点 p 本身为叶子结点,直接删除即可
    if (!(*p)->lchild && !(*p)->rchild)
    {
        *p = NULL;
    }
    //左子树为空,只需用结点 p 的右子树根结点代替结点 p 即可;
    else if (!(*p)->lchild)
    {
        q = *p;
        *p = (*p)->rchild;
        free(q);
        q = NULL;
    }
    //右子树为空,只需用结点 p 的左子树根结点代替结点 p 即可;
    else if (!(*p)->rchild)
    {
        q = *p;
        //这里不是指针 *p 指向左子树,而是将左子树存储的结点的地址赋值给指针变量 p
        *p = (*p)->lchild;
        free(q);
        q = NULL;
    }
    //左右子树均不为空,采用第 2 种方式
    else
    {
        q = *p;
        s = (*p)->lchild;
        //遍历,找到结点 p 的直接前驱
        while (s->rchild)
        {
            //指向p节点左子树最右边节点的前一个。保留下来
            q = s;
            s = s->rchild;
        }
        //直接改变结点 p 的值
        (*p)->data = s->data;
        //判断结点 p 的左子树 s 是否有右子树,分为两种情况讨论  如果有右子树,s一定会指向右子树的叶子节点。q 此时指向的是叶子节点的父节点。 q != *p二者不等说明有右子树
        if (q != *p)
        {
            //若有,则在删除直接前驱结点的同时,令前驱的左孩子结点改为 q 指向结点的孩子结点
            q->rchild = s->lchild;
        }
        else
        //q == *p ==NULL 说明没有右子树
        {
            //否则,直接将左子树上移即可
            q->lchild = s->lchild;
        }
        free(s);
        s = NULL;
    }
    return TRUE;
}
/**
 * @Description: 删除二叉树中的元素
 * @Param: BiTree *T 指向二叉树结构体的指针 int key 要删除的元素
 * @Return: 删除成功 TRUE 删除失败 FALSE
 * @Author: Carlos
 */
int DeleteBST(BiTree *T, int key)
{
    if (!(*T))
    { //不存在关键字等于key的数据元素
        return FALSE;
    }
    else
    {
        if (key == (*T)->data)
        {
            Delete(T);
            return TRUE;
        }
        else if (key < (*T)->data)
        {
            //使用递归的方式
            return DeleteBST(&(*T)->lchild, key);
        }
        else
        {
            return DeleteBST(&(*T)->rchild, key);
        }
    }
}
/**
 * @Description: 中序遍历输出二叉树
 * @Param: BiTree t 结构体变量
 * @Return: 无
 * @Author: Carlos
 */
void order(BiTree t) 
{
    if (t == NULL)
    {
        return;
    }
    order(t->lchild);
    printf("%d ", t->data);
    order(t->rchild);
}
int main()
{
    int i;
    int a[5] = {3, 4, 2, 5, 9};
    BiTree T = NULL;
    for (i = 0; i < 5; i++)
    {
        InsertBST(&T, a[i]);
    }
    printf("中序遍历二叉排序树:\n");
    order(T);
    printf("\n");
    printf("删除3后,中序遍历二叉排序树:\n");
    DeleteBST(&T, 3);
    order(T);
}


  
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61
  • 62
  • 63
  • 64
  • 65
  • 66
  • 67
  • 68
  • 69
  • 70
  • 71
  • 72
  • 73
  • 74
  • 75
  • 76
  • 77
  • 78
  • 79
  • 80
  • 81
  • 82
  • 83
  • 84
  • 85
  • 86
  • 87
  • 88
  • 89
  • 90
  • 91
  • 92
  • 93
  • 94
  • 95
  • 96
  • 97
  • 98
  • 99
  • 100
  • 101
  • 102
  • 103
  • 104
  • 105
  • 106
  • 107
  • 108
  • 109
  • 110
  • 111
  • 112
  • 113
  • 114
  • 115
  • 116
  • 117
  • 118
  • 119
  • 120
  • 121
  • 122
  • 123
  • 124
  • 125
  • 126
  • 127
  • 128
  • 129
  • 130
  • 131
  • 132
  • 133
  • 134
  • 135
  • 136
  • 137
  • 138
  • 139
  • 140
  • 141
  • 142
  • 143
  • 144
  • 145
  • 146
  • 147
  • 148
  • 149
  • 150
  • 151
  • 152
  • 153
  • 154
  • 155
  • 156
  • 157
  • 158
  • 159
  • 160
  • 161
  • 162
  • 163
  • 164
  • 165
  • 166
  • 167
  • 168
  • 169
  • 170
  • 171
  • 172
  • 173
  • 174
  • 175
  • 176
  • 177
  • 178
  • 179
  • 180
  • 181
  • 182
  • 183
  • 184
  • 185
  • 186
  • 187
  • 188
  • 189
  • 190
  • 191
  • 192
  • 193
  • 194
  • 195
  • 196
  • 197
  • 198
  • 199
  • 200
  • 201
  • 202
  • 203
  • 204
  • 205
  • 206
  • 207
  • 208
  • 209
  • 210

文章来源: blog.csdn.net,作者:嵌入式与Linux那些事,版权归原作者所有,如需转载,请联系作者。

原文链接:blog.csdn.net/qq_16933601/article/details/106500778

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。