Pandas玩转数据透视表,用它就够了~

举报
Python新视野 发表于 2022/04/30 17:10:08 2022/04/30
【摘要】 大家好,我是丁小杰。对于数据透视表,相信对于 Excel 比较熟悉的小伙伴都知道如何使用它,并了解它的强大之处,而在pandas中要实现数据透视就要用到pivot_table了。 导入示例数据首先导入演示的数据集。import pandas as pddf = pd.read_csv('销售目标.csv')df.head() 参数说明主要参数:data:待操作的 DataFramevalue...

大家好,我是丁小杰。

对于数据透视表,相信对于 Excel 比较熟悉的小伙伴都知道如何使用它,并了解它的强大之处,而在pandas中要实现数据透视就要用到pivot_table了。

导入示例数据

首先导入演示的数据集。

import pandas as pd

df = pd.read_csv('销售目标.csv')
df.head()

参数说明

主要参数:

  • data:待操作的 DataFrame
  • values:被聚合操作的列,可选项
  • index:行分组键,作为结果 DataFrame 的行索引
  • columns:列分组键,作为结果 DataFrame 的列索引
  • aggfunc:聚合函数/函数列表,默认 numpy.mean 这里要注意如果 aggfunc 中存在函数列表,则返回的 DataFrame 中会显示函数名称
  • fill_value:默认 None,可设定缺省值
  • dropna:默认 True,如果列的所有值都是 NaN,将被删除;False 则保留
  • margins:默认 False,设置为 True 可以添加行/列的总计
  • margins_name:默认显示 ‘ALL’,当 margins = True 时,可以设定 margins 行/列的名称

常用操作

使用pivot_table时必须要指定index,因为计算时要根据index进行聚合。

pd.pivot_table(df.head(20),
               index='订单日期',
               aggfunc=np.sum)

通过指定value来选择被聚合的列。

pd.pivot_table(df.head(20),
               values='销售目标',
               index='订单日期',
               aggfunc=np.sum)

当只指定index进行聚合时,其实用groupby可以实现同样的效果。

df.head(20).groupby(['订单日期'])['销售目标'].sum().reset_index()

添加columns参数,对列分组。

pd.pivot_table(df.head(10),
               values='销售目标',
               index=['订单日期', '类别'],
               columns='细分',
               aggfunc=np.sum)

对于上面结果中的空值,使用fill_value参数统一填充为0

pd.pivot_table(df.head(10),
               values='销售目标',
               index=['订单日期', '类别'],
               columns=['细分'],
               aggfunc=np.sum,
               fill_value=0)

现在按年份来统计销售数据,注意此时的aggfunc参数,当参数值包含列表时,在结果DataFrame中就会显示函数名称。

pd.pivot_table(df,
               values='销售目标',
               index=['年份', '类别'],
               columns='细分',
               aggfunc=[np.sum])

如果需要添加合计列,只需指定margins=True即可,同时根据需要指定合计名称。

pd.pivot_table(df,
               values='销售目标',
               index=['年份', '类别'],
               columns='细分',
               aggfunc=np.sum,
               margins=True,
              margins_name='合计')

当然与groupby类似,对于计算函数我们可以同时指定多种方式。

pd.pivot_table(df,
               values='销售目标',
               index=['年份', '类别'],
               columns=['细分'],
               aggfunc={'销售目标': [max, np.sum]},
               fill_value=0)

以上就是pandas数据透视的常用操作了,使用起来也是十分简单,大家可以自己练习一下,如果文章对你有帮助,请点赞支持一下哦!


【版权声明】本文为华为云社区用户原创内容,未经允许不得转载,如需转载请自行联系原作者进行授权。如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。