用Python计算样本方差,总体方差,比较
【摘要】
1.样本方差
#样本方差,考虑自由度
def f_sigma(x):
# 通过Python定义一个计算变量波动率的函数
# x:代表变量的样本值,可以用列表的数据结构输入
n ...
1.样本方差
#样本方差,考虑自由度
def f_sigma(x):
# 通过Python定义一个计算变量波动率的函数
# x:代表变量的样本值,可以用列表的数据结构输入
n = len(x)
u_mean = sum(x)/n #计算变量样本值的均值
z = [] #生成一个空列表
for t in range(n):
z.append((x[t]-u_mean)**2)
return (sum(z)/(n-1))**0.5 # n-1 自由度
a = f_sigma(x = [1,2,3])
print('样本方差:', a)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
2.总体方差
#总体方差,总体个数
def f_sigma(x):
# 通过Python定义一个计算变量波动率的函数
# x:代表变量的样本值,可以用列表的数据结构输入
n = len(x)
u_mean = sum(x)/n #计算变量样本值的均值
z = [] #生成一个空列表
for t in range(n):
z.append((x[t]-u_mean)**2)
return (sum(z)/n)**0.5 # n 总体个数
a = f_sigma([1,2,3])
print('总体方差:', a)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
3.两者区别
#样本方差,考虑自由度
def f_sigma(x):
# 通过Python定义一个计算变量波动率的函数
# x:代表变量的样本值,可以用列表的数据结构输入
n = len(x)
u_mean = sum(x)/n #计算变量样本值的均值
z = [] #生成一个空列表
for t in range(n):
z.append((x[t]-u_mean)**2)
return (sum(z)/(n-1))**0.5 # n-1 自由度
a = f_sigma(x = [1,2,3])
print('样本方差:', a)
#总体方差,总体个数
def f_sigma(x):
# 通过Python定义一个计算变量波动率的函数
# x:代表变量的样本值,可以用列表的数据结构输入
n = len(x)
u_mean = sum(x)/n #计算变量样本值的均值
z = [] #生成一个空列表
for t in range(n):
z.append((x[t]-u_mean)**2)
return (sum(z)/n)**0.5 # n 总体个数
a = f_sigma([1,2,3])
print('总体方差:', a)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
文章来源: blog.csdn.net,作者:yk 坤帝,版权归原作者所有,如需转载,请联系作者。
原文链接:blog.csdn.net/qq_45803923/article/details/123498874
【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱:
cloudbbs@huaweicloud.com
- 点赞
- 收藏
- 关注作者
评论(0)