【数字信号处理】序列傅里叶变换 ( 基本序列的傅里叶变换 | 求 a^nu(n) 的傅里叶变换 )

举报
韩曙亮 发表于 2022/03/10 00:50:33 2022/03/10
【摘要】 文章目录 一、求 a^nu(n) 傅里叶变换1、傅里叶变换与反变换公式介绍2、求 sinωn 的傅里叶变换推导过程 一、求 a^nu(n) 傅里叶变换 求 ...





一、求 a^nu(n) 傅里叶变换



a n u ( n ) a^nu(n) anu(n) 的傅里叶变换 S F T [ a n u ( n ) ] SFT[a^nu(n)] SFT[anu(n)] ?

其中 ∣ a ∣ ≤ 1 |a| \leq 1 a1 ;


1、傅里叶变换与反变换公式介绍


傅里叶变换 : 时域 " 离散非周期 " 信号 , 其频域就是 " 连续周期 " 的 , 其频域 可以 展开成一个 " 正交函数的无穷级数加权和 " , 如下公式

X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n} X(ejω)=n=+x(n)ejωn


傅里叶反变换 : 利用 " 正交函数 " 可以推导出 " 傅里叶反变换 " , 即 根据 傅里叶变换 推导 序列 ;

x ( n ) = 1 2 π ∫ − π π X ( e j ω ) e j ω k d ω x(n) = \cfrac{1}{2\pi} \int_{-\pi} ^\pi X( e^{j \omega } )e^{j \omega k} d \omega x(n)=2π1ππX(ejω)ejωkdω


2、求 sinωn 的傅里叶变换推导过程


a n u ( n ) a^nu(n) anu(n)

序列 , 直接带入到

X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n) e^{-j \omega n} X(ejω)=n=+x(n)ejωn

傅里叶变换公式中 , 可得到 :

X ( e j ω ) = ∑ n = 0 + ∞ a n e − j ω n X(e^{j\omega}) = \sum_{n=0}^{+\infty} a^n e^{-j \omega n} X(ejω)=n=0+anejωn

根据 " 等比级数求和 " 公式 , 可以得到

X ( e j ω ) = 1 1 − a e − j ω X(e^{j\omega}) = \cfrac{1}{1-ae^{-j \omega}} X(ejω)=1aejω1

文章来源: hanshuliang.blog.csdn.net,作者:韩曙亮,版权归原作者所有,如需转载,请联系作者。

原文链接:hanshuliang.blog.csdn.net/article/details/123372297

【版权声明】本文为华为云社区用户转载文章,如果您发现本社区中有涉嫌抄袭的内容,欢迎发送邮件进行举报,并提供相关证据,一经查实,本社区将立刻删除涉嫌侵权内容,举报邮箱: cloudbbs@huaweicloud.com
  • 点赞
  • 收藏
  • 关注作者

评论(0

0/1000
抱歉,系统识别当前为高风险访问,暂不支持该操作

全部回复

上滑加载中

设置昵称

在此一键设置昵称,即可参与社区互动!

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。

*长度不超过10个汉字或20个英文字符,设置后3个月内不可修改。